[1]汪自力,高骥,李信,等.饱和——非饱和三维瞬态渗流的高斯点有限元分析[J].郑州大学学报(工学版),1991,12(03):84-90.
Wang Zili,Gao Yan,Li Xin,et al.Saturation -non -saturated three -dimensional transient infiltration Gaussian dot finite element analysis[J].Journal of Zhengzhou University (Engineering Science),1991,12(03):84-90.
点击复制
饱和——非饱和三维瞬态渗流的高斯点有限元分析()
《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]
- 卷:
-
12
- 期数:
-
1991年03期
- 页码:
-
84-90
- 栏目:
-
- 出版日期:
-
1991-09-28
文章信息/Info
- Title:
-
Saturation -non -saturated three -dimensional transient infiltration Gaussian dot finite element analysis
- 作者:
-
汪自力;高骥;李信;李莉;
-
黄河水利委员会水利科学研究院,黄河水利委员会水利科学研究院,黄河水利委员会水利科学研究院,黄河水利委员会水利科学研究院,
- Author(s):
-
Wang Zili; Gao Yan; Li Xin; Li Li;
-
The Yellow River Water Conservancy Committee Institute of Water Conservancy Science, the Yellow River Water Conservancy Committee Institute of Water Conservancy Sciences, the Yellow River Water Conservancy Committee Institute of Water Conservancy Sciences, the Yellow River Water Conservancy Committee
-
- 关键词:
-
三维; 瞬态渗流; 饱和——非饱和; 高斯点; 有限元
- Keywords:
-
Three -dimensional; Inspective infiltration; saturation -non -saturated; Gaussian; finite element
- 文献标志码:
-
A
- 摘要:
-
本文提出了堤坝三维饱和——非饱和瞬态渗流有限元分析的一种新方法——高斯点法。本法是根据饱和——非饱和渗流规律建立的数学模型,将堤坝内饱和——非饱和区耦合在一起,构成整体的分析膜型,然后利用数值积分时高斯点处压力选取计算参数来进行单元刚度矩阵的计算,从而解决了单元内存在的非饱和渗透参数不同的问题。也解决了由于饱和区边界条件突变引起的计算不稳定问题。该法计算量小,迭代格式简单,算例表明了该法的有效性。
- Abstract:
-
This article proposes a new method of the three -dimensional saturation of the dam -the Gaussian method. This method is a mathematical model established according to the saturation -non -saturated osmotic law. It couples the intra -width of the dam -the non -saturated region is coupled together to form an overall analytical membrane type. Then use the pressure of the Gaussian point to calculate the calculation of the unit rigid matrix when the Gaussian point is used to solve the problems of different non -saturated penetration parameters in the unit. It also solves the problem of calculation instability caused by the mutation of saturated regional boundaries. The amount of this method is small and the iterative format is simple, which shows the effectiveness of the law.
更新日期/Last Update:
1900-01-01