[1]周荣敏,雷延锋..基于遗传算法的雨水管道系统优化设计[J].郑州大学学报(工学版),2003,24(04):59-62.[doi:10.3969/j.issn.1671-6833.2003.04.014]
 ZHOU Rongmin,Lei Yanfeng.Optimal design of rainwater pipe system based on genetic algorithm[J].Journal of Zhengzhou University (Engineering Science),2003,24(04):59-62.[doi:10.3969/j.issn.1671-6833.2003.04.014]
点击复制

基于遗传算法的雨水管道系统优化设计()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
24
期数:
2003年04期
页码:
59-62
栏目:
出版日期:
1900-01-01

文章信息/Info

Title:
Optimal design of rainwater pipe system based on genetic algorithm
作者:
周荣敏雷延锋.
郑州大学环境与水利学院,河南,郑州,450002, 郑州大学环境与水利学院,河南,郑州,450002
Author(s):
ZHOU Rongmin; Lei Yanfeng
关键词:
遗传算法 雨水管道系统 优化设计 浮点数编码 适应度函数
Keywords:
DOI:
10.3969/j.issn.1671-6833.2003.04.014
文献标志码:
A
摘要:
建立了一个雨水管道系统优化设计模型,并应用遗传算法求解管网投资最小的最优设计方案.该方法以管段设计流速为决策变量,采用浮点数编码方式将优化问题的解表达为染色体,设计了相应的适应度函数、交叉算子和变异算子.与传统设计方法相比,遗传算法所得到的最优设计方案可比原设计方案节约投资19.38%.研究表明,应用GA进行城市雨水管道系统优化设计是一种可行且非常有效的新方法,不仅可以找到最优设计方案,而且可以为决策者提供多种优化设计方案,为进行方案评价和决策提供可靠依据.
Abstract:
An optimal design model of rainwater pipe system is established, and the genetic algorithm is applied to solve the optimal design scheme with minimal investment in pipe network. In this method, the flow rate of the pipe segment design is taken as the decision-making variable, and the solution of the optimization problem is expressed as chromosomes by floating-point number coding, and the corresponding fitness function, cross operator and variation operator are designed. Compared with the traditional design method, the optimal design scheme obtained by the genetic algorithm can save 19.38% of the investment compared with the original design scheme.The results show that the optimal design of urban rainwater pipe system using GA is a feasible and very effective new method, which can not only find the optimal design scheme, but also provide a variety of optimization design schemes for decision makers, and provide a reliable basis for scheme evaluation and decision-making.

相似文献/References:

[1]马欢张建伟赵进超.求解VRPSDP的变邻域混合遗传算法[J].郑州大学学报(工学版),2015,36(03):120.[doi:10.3969/ j. issn.1671 -6833.2015.03.026]
 MA Huan,ZHANG Jian-wei,ZHAO Jin-chao,et al.A Hybrid Genetic and Variable Neighborhood Descent Algorithm for VehicleRouting Problem with Simultaneous Delivery and Pickup[J].Journal of Zhengzhou University (Engineering Science),2015,36(04):120.[doi:10.3969/ j. issn.1671 -6833.2015.03.026]
[2]左士伟,杨胡萍,张扬,等.基于改进遗传算法的电力系统无功优化[J].郑州大学学报(工学版),2015,36(06):66.[doi:10.3969/j. issn.1671 -6833.2015.06.013]
 YANG Huping,Ll Weiren,ZUO Shiwei,et al.Reactive Power Optimization by Improved Genetic Algorithm Method[J].Journal of Zhengzhou University (Engineering Science),2015,36(04):66.[doi:10.3969/j. issn.1671 -6833.2015.06.013]
[3]陆森林,任栉翔.基于响应面法的车内噪声分析与优化[J].郑州大学学报(工学版),2017,38(05):65.[doi:10.13705/j.issn.1671-6833.2017.05.002]
 Lu Senlin,Ren Guxiang.Analysis and Optimization of Vehicle Inner Noise Based on Response Surface Method[J].Journal of Zhengzhou University (Engineering Science),2017,38(04):65.[doi:10.13705/j.issn.1671-6833.2017.05.002]
[4]蒋建东,王忆,张灵娟,等.基于遗传算法的背靠背换流站控制系统参数优化[J].郑州大学学报(工学版),2015,36(01):6.[doi:10.3969/ j. issn.1671 -6833.2015.01. 002]
 JIANG Jian-dong,WANG Yi,ZHANG Ling-juan,et al.Parameter Optimization of Control System for Back to Back Converter Station based on Genetic Algorithm[J].Journal of Zhengzhou University (Engineering Science),2015,36(04):6.[doi:10.3969/ j. issn.1671 -6833.2015.01. 002]
[5]穆瑞杰.基于遗传算法的地铁车站引导标识布点探析[J].郑州大学学报(工学版),2018,39(01):73.[doi:10.13705/j.issn.1671-6833.2018.01.019]
 Mu Ruijie.Analysis of Position Settings for Oriented Identifies of Subway Station[J].Journal of Zhengzhou University (Engineering Science),2018,39(04):73.[doi:10.13705/j.issn.1671-6833.2018.01.019]
[6]蒋佩华,华冰,黄宇,等.基于遗传算法的变质量航天器姿态控制方法 [J].郑州大学学报(工学版),2019,40(04):1.[doi:10.13705/j.issn.1671-6833.2019.04.009]
 Jiang Peihua,Huabing,Huang Yu,et al.The Attitude Control Method of Variable Mass Spacecraft Based on Genetic Algorithm [J].Journal of Zhengzhou University (Engineering Science),2019,40(04):1.[doi:10.13705/j.issn.1671-6833.2019.04.009]
[7]樊一娜,梁伟,黄渝清,等.基于IGA 的配电系统运行损耗与可靠性优化[J].郑州大学学报(工学版),2019,40(05):58.[doi:10.13705/j.issn.1671-6833.2019.05.009]
 Fan Yina,Liang Wei,Huang Yuqing,et al.Optimization of operation loss and reliability of power distribution system based on IGA[J].Journal of Zhengzhou University (Engineering Science),2019,40(04):58.[doi:10.13705/j.issn.1671-6833.2019.05.009]
[8]黄茜,王书勤,邓少鸿,等.不确定环境下救灾部队驻地选址及搜救路径优化[J].郑州大学学报(工学版),2021,42(05):44.[doi:10.13705/j.issn.1671-6833.2021.05.015]
 Huang Qian,Wang Shuqin,Deng Shaohong,et al.Study on Location-Routing Problem of Earthquake Relief Troops in Uncertain Unvironment[J].Journal of Zhengzhou University (Engineering Science),2021,42(04):44.[doi:10.13705/j.issn.1671-6833.2021.05.015]
[9]赵艳敏,霍达..基于遗传模拟退火算法的钢桁架结构优化设计[J].郑州大学学报(工学版),2011,32(06):54.
 ZHAO Yan-min,HUO Da.Optimal Design of Steel Truss Structure Based on Genetic Simulated Annealing Algorithm[J].Journal of Zhengzhou University (Engineering Science),2011,32(04):54.
[10]任松,姜德义,杨春和..基于遗传算法的浅埋隧道开挖地表沉降神经网络预测[J].郑州大学学报(工学版),2006,27(03):46.[doi:10.3969/j.issn.1671-6833.2006.03.011]
 Ren Song,JIANG Deyi,Yang Chunhe.Prediction of surface settlement neural network for shallow buried tunnel excavation based on genetic algorithm[J].Journal of Zhengzhou University (Engineering Science),2006,27(04):46.[doi:10.3969/j.issn.1671-6833.2006.03.011]

更新日期/Last Update: 1900-01-01