[1]谭秀湖,刘国枝,孙旭..基于最小均方差下的3D模型数字水印算法[J].郑州大学学报(工学版),2006,27(04):101-105.[doi:10.3969/j.issn.1671-6833.2006.04.025]
 Tan Xiu Lake,Liu Guozhi,Sun Xu.Digital watermarking algorithm for 3D models based on minimum mean square deviation [J].Journal of Zhengzhou University (Engineering Science),2006,27(04):101-105.[doi:10.3969/j.issn.1671-6833.2006.04.025]
点击复制

基于最小均方差下的3D模型数字水印算法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
27
期数:
2006年04期
页码:
101-105
栏目:
出版日期:
1900-01-01

文章信息/Info

Title:
Digital watermarking algorithm for 3D models based on minimum mean square deviation

作者:
谭秀湖刘国枝孙旭.
哈尔滨工程大学水声工程学院,黑龙江,哈尔滨,150001, 哈尔滨工程大学水声工程学院,黑龙江,哈尔滨,150001, 哈尔滨工程大学水声工程学院,黑龙江,哈尔滨,150001
Author(s):
Tan Xiu Lake; Liu Guozhi; Sun Xu
关键词:
3D网格水印 均方误差最小 鲁棒性 安全性
Keywords:
DOI:
10.3969/j.issn.1671-6833.2006.04.025
文献标志码:
A
摘要:
使得三维模型变换带来的误差能量,最小影射到嵌入水印上.为使嵌入的水印对于三维模型的拓扑变换和几何变换都具有鲁棒性,提出一种基于最小均方差的3D几何模型算法,算法首先通过对三维网格顶点排序和挑选,排序和挑选的原则是使得被挑选的顶点具有最小的边距和,即通过对3D模型网格顶点优化选择,使得选择后的顶点受到拓扑攻击影响最小;然后,计算选择后顶点扰动均方误差能量,将水印嵌入到受误差能量影响最小的空间,使得嵌入的水印受到几何攻击影响最小.实验结果表明,算法对几何攻击和拓扑攻击具有好的抵御能力.
Abstract:
The error energy caused by the 3D model transformation is minimally reflected on the embedded watermark. In order to make the embedded watermark robust to the topological transformation and geometric transformation of the three-dimensional model, a 3D geometric model algorithm based on the minimum mean square deviation is proposed, and the algorithm first sorts and selects the vertices of the three-dimensional mesh, and the principle of sorting and picking is to make the selected vertices have the smallest margin sum, that is, by optimizing the selection of the vertices of the <>D model mesh, the selected vertices are least affected by topological attacks; Then, the mean squared error energy of the selected vertex perturbation is calculated to embed the watermark into the space with the least influence of the error energy, so that the embedded watermark is least affected by geometric attack. Experimental results show that the algorithm has good resistance to geometric attacks and topological attacks.

更新日期/Last Update: 1900-01-01