[1]郭克希,谭佩莲,唐进元..基于人工神经网络的螺旋锥齿轮磨削加工表面粗糙度预测[J].郑州大学学报(工学版),2009,30(03):65-67,74.
 GUO Kexi,TAN Peilian,TANG Jinyuan.Surface Roughness Forecasting of Spiral Bevel Gear Based on Artificial Neural Network[J].Journal of Zhengzhou University (Engineering Science),2009,30(03):65-67,74.
点击复制

基于人工神经网络的螺旋锥齿轮磨削加工表面粗糙度预测()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
30
期数:
2009年03期
页码:
65-67,74
栏目:
出版日期:
1900-01-01

文章信息/Info

Title:
Surface Roughness Forecasting of Spiral Bevel Gear Based on Artificial Neural Network
作者:
郭克希谭佩莲唐进元.
长沙理工大学,汽车与机械工程学院,湖南,长沙,410004, 中南大学,机电工程学院,湖南,长沙,410083
Author(s):
GUO KexiTAN PeilianTANG Jinyuan
1.Auto and Mechanical Engineer College,Changsha University2.School of Mechanical&Electrical Engineering.Central South of Science and Technology,Changsha 410004,China;University。Changsha 410083,China
关键词:
神经网络 BP模型 螺旋锥齿轮 表面粗糙度
Keywords:
tificial neural networkmodel BPspiral bevel gearsurface roughness
摘要:
影响螺旋雏齿轮磨削加工表面粗糙度Ra的因素众多且很不明确,Ra值的预测属于典型的模糊非线性问题.根据神经网络原理,建立了预测Ra的BP模型,此模型可精确地描述砂轮进给速度、齿深进给量对螺旋锥齿轮磨削加工表面粗糙度的影响.实验证明,用BP模型预测螺旋锥齿轮磨削加工表面粗糙度可获得平均相对误差为3.78%的高精度预测结果.
Abstract:
Because the value of Ra is affected by a lot of factors and some of them are undefined。the Surface roughness forecasting of spiral bevel gears is a typical fuzzy,non~linear system.In this paper,based on the priority principle of BP artificial neural network,surface roughness forecasting is set up.This model BP can accurately describe the effect of wheel’S feed velocity and deep tooth feed on surface roughness of spiral bevel gears.The experiment data proves that the model BP used in forecasting the surface roughness of spiral bevel gears can get a more precise result.

相似文献/References:

[1]蒋建东,张豪杰,王静.基于HHT的电力负荷组合预测应用[J].郑州大学学报(工学版),2015,36(04):1.[doi:10.3969/ j. issn.1671 - 6833.2015.04.001]
 JIANG Jian-dong,ZHANG Hao-jie,WANG Jing.Research and Application of HHT-Based Power Load Combination Forecasting[J].Journal of Zhengzhou University (Engineering Science),2015,36(03):1.[doi:10.3969/ j. issn.1671 - 6833.2015.04.001]
[2]邓万宇,李力,牛慧娟.基于Spark的并行极速神经网络[J].郑州大学学报(工学版),2016,37(05):47.[doi:10.3969/ j.issn.1671 -6833.2016.05.010]
 Deng Wanyu,Li Li,Niu Huijuan.Sparked-based Parallel Extreme Learning Machine[J].Journal of Zhengzhou University (Engineering Science),2016,37(03):47.[doi:10.3969/ j.issn.1671 -6833.2016.05.010]
[3]肖斌,张恒宾,刘宏伟.改进PSO-BPNN算法在管道腐蚀预测中的应用[J].郑州大学学报(工学版),2022,43(01):27.[doi:10.13705/j.issn.1671-6833.2022.01.008]
 XIAO Bin,ZHANG Hengbin,LIU Hongwei.Application of Improved PSO-BPNN Algorithm in Corroded Pipelines Prediction[J].Journal of Zhengzhou University (Engineering Science),2022,43(03):27.[doi:10.13705/j.issn.1671-6833.2022.01.008]
[4]杨华芬,杨有,尚晋..一种改进的进化神经网络优化设计方法[J].郑州大学学报(工学版),2010,31(05):116.[doi:10.3969/j.issn.1671-6833.2010.05.028]
[5]周洪煜,陈晓煜,徐春霞..预测控制在中央空调净化系统中的应用[J].郑州大学学报(工学版),2008,29(03):73.[doi:10.3969/j.issn.1671-6833.2008.03.019]
 ZHOU Hongyu,CHEN Xiaoyu,Xu Chunxia.Application of predictive control in central air conditioning purification system[J].Journal of Zhengzhou University (Engineering Science),2008,29(03):73.[doi:10.3969/j.issn.1671-6833.2008.03.019]
[6]刘伟,刘赞,王玲玲..神经网络与结构编码法预测直馏汽油色谱保留指数[J].郑州大学学报(工学版),2004,25(03):26.[doi:10.3969/j.issn.1671-6833.2004.03.007]
 LIU Wei,LIU Zan,Wang Lingling.Neural network and structural coding method to predict the chromatographic retention index of straight-run gasoline[J].Journal of Zhengzhou University (Engineering Science),2004,25(03):26.[doi:10.3969/j.issn.1671-6833.2004.03.007]
[7]樊亚军,曲仕茹..利用BP神经网络实现三维飞机目标识别[J].郑州大学学报(工学版),2004,25(04):56.[doi:10.3969/j.issn.1671-6833.2004.04.015]
 Fan Yajun,Qu Shiru.BP neural network is used to realize three-dimensional aircraft target recognition[J].Journal of Zhengzhou University (Engineering Science),2004,25(03):56.[doi:10.3969/j.issn.1671-6833.2004.04.015]
[8]王少波,柴艳丽,梁醒培..神经网络学习样本点的选取方法比较[J].郑州大学学报(工学版),2003,24(01):63.[doi:10.3969/j.issn.1671-6833.2003.01.014]
 Wang Shaobo,Chai Yanli,Liang Xingpei.Comparison of the selection methods of neural network learning sample points[J].Journal of Zhengzhou University (Engineering Science),2003,24(03):63.[doi:10.3969/j.issn.1671-6833.2003.01.014]
[9]刘应梅,杨宛辉,章健,等.基于人工神经网络的变电站故障诊断[J].郑州大学学报(工学版),1999,20(04):86.[doi:10.3969/j.issn.1671-6833.1999.04.027]
 LIU Yingmei,Yang Wanhui,ZHANG Jian,et al.Substation fault diagnosis based on artificial neural network[J].Journal of Zhengzhou University (Engineering Science),1999,20(03):86.[doi:10.3969/j.issn.1671-6833.1999.04.027]
[10]高金峰,宁彦卿.谐波分析神经网络的开关电容实现[J].郑州大学学报(工学版),1997,18(04):1.
 Gao Jinfeng,Ning Yanqing.Harmonic analysis neural network switch capacitance realization[J].Journal of Zhengzhou University (Engineering Science),1997,18(03):1.

更新日期/Last Update: 1900-01-01