[1]曾庆山,张晓楠.基于EMD和组合模型的太阳黑子时间序列预测[J].郑州大学学报(工学版),2014,35(03):78-82.[doi:10 3969/jissn.1671 -6833.2014.03.019]
ZENG Qingshan,ZHANG Xiaonan.Sunspots Time-series Prediction Based on EMD and Combination Model[J].Journal of Zhengzhou University (Engineering Science),2014,35(03):78-82.[doi:10 3969/jissn.1671 -6833.2014.03.019]
点击复制
基于EMD和组合模型的太阳黑子时间序列预测()
《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]
- 卷:
-
35
- 期数:
-
2014年03期
- 页码:
-
78-82
- 栏目:
-
- 出版日期:
-
2014-06-30
文章信息/Info
- Title:
-
Sunspots Time-series Prediction Based on EMD and Combination Model
- 作者:
-
曾庆山; 张晓楠
-
- Author(s):
-
ZENG Qingshan; ZHANG Xiaonan
-
School of Eleetrical Engineering, Zhengzhou University, Zhengzhou 450001 , China
-
- Keywords:
-
sunspot; combination model; EMD decomposition ; forecasting
- 分类号:
-
TP391
- DOI:
-
10 3969/jissn.1671 -6833.2014.03.019
- 文献标志码:
-
A
- Abstract:
-
Sunspots are non-linear, non-stationary, multi-seale changes time-series, and the observations wereofen interfered by noise. Aeeorling to the eomplexity of sunspots time-series prediction , first of all, this paperpreprocessed the original data through wavelet de-noising method, then the denoised signal was deeomposedinto several lMF components and remainder by EMD. In view of the charaeteristies of the low frequeney andhigh frequeney components, RBF neural network model and SVM model were used to prediet them respeetive.ly, the final predicted value would be got by adding each component’s result at last. The simulation resultsshow that this model has higher prediclion accuracy.
更新日期/Last Update: