[1]张端金,汪爱娟.基于改进的小波核主元分析故障检测[J].郑州大学学报(工学版),2015,36(01):97-100.[doi:10.3969/ j. issn.1671 - 6833.2015.01.023]
ZHANG Duan-jin,WANG Ai-juan.Fault Detection Based on Improved Wavelet Kernel Principal Component Analysis[J].Journal of Zhengzhou University (Engineering Science),2015,36(01):97-100.[doi:10.3969/ j. issn.1671 - 6833.2015.01.023]
点击复制
基于改进的小波核主元分析故障检测()
《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]
- 卷:
-
36
- 期数:
-
2015年01期
- 页码:
-
97-100
- 栏目:
-
- 出版日期:
-
2015-01-10
文章信息/Info
- Title:
-
Fault Detection Based on Improved Wavelet Kernel Principal Component Analysis
- 作者:
-
张端金; 汪爱娟
-
郑州大学信息工程学院,河南郑州 450001
- Author(s):
-
ZHANG Duan-jin; WANG Ai-juan
-
School of Information Engineering ,Zhengzhou University,Zhengzhou 450001 ,China
-
- 关键词:
-
核主元分析; 小波核函数; 小波去噪; 故障检测
- Keywords:
-
kernel principal component analysis ; wavelet kernel function; wavelet denoising; fault detection
- 分类号:
-
TP273
- DOI:
-
10.3969/ j. issn.1671 - 6833.2015.01.023
- 文献标志码:
-
A
- 摘要:
-
研究了基于核主元分析的非线性系统故障检测问题.提出了一种改进的小波核主元分析的故障检测方法.该方法首先对数据进行小波去噪预处理,然后再利用小波核函数,将非线性的输入空间转换到线性特征空间.在特征空间使用主元分析,结合SPE统计量和T统计量对非线性系统进行故障检测.仿真结果表明:该方法能够提高故障检测性能.
- Abstract:
-
The problem of fault detection for a class of nonlinear systems based on kernel principal componentanalysis is studied. The improved wavelet kernel principal component analysis is proposed. Firstly,the pro-posed method is applied to denose the data. Then,the preprocessed data is transformed by wavelet kernelfunction to map the nonlinear input space into linear characterization space. In the feature space,principalcomponent analysis is applied to detect faults for nonlinear system,in combination with SPE statistic and T’statistic. Simulation results show that the method can improve the fault detection performance.
更新日期/Last Update: