[1]孙晓燕,朱利霞,陈杨.基于可能性条件偏好网络的交互式遗传算法及其应用[J].郑州大学学报(工学版),2017,38(06):1-5.[doi:10.13705/j.issn.1671-6833.2017.06.001]
 Sun Xiaoyan,Zhu Lixia,Chen Yang.Probabilistic Conditional Preference Network Assisted Interactive Genetic Algorithm and Its Application[J].Journal of Zhengzhou University (Engineering Science),2017,38(06):1-5.[doi:10.13705/j.issn.1671-6833.2017.06.001]
点击复制

基于可能性条件偏好网络的交互式遗传算法及其应用()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
38
期数:
2017年06期
页码:
1-5
栏目:
出版日期:
2017-11-20

文章信息/Info

Title:
Probabilistic Conditional Preference Network Assisted Interactive Genetic Algorithm and Its Application
作者:
孙晓燕朱利霞陈杨
中国矿业大学信息与控制工程学院,江苏徐州,221008
Author(s):
Sun Xiaoyan Zhu Lixia Chen Yang
School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221008
关键词:
交互式遗传算法不确定性可能性条件偏好网络个性化搜索
Keywords:
interactive genetic algorithmuncertaintypossibilitic conditional preference networkspersonal-ized search
DOI:
10.13705/j.issn.1671-6833.2017.06.001
文献标志码:
A
摘要:
根据用户实施的人机交互行为而隐式地获取用户偏好的交互式进化优化算法,可有效减轻用户疲劳,提高个性化搜索或推荐的效率. 但是,已有研究没有考虑用户交互行为和偏好的不确定性,影响了对用户偏好的拟合精度以及基于该偏好表达的进化搜索. 针对该问题,本文提出基于可能性条件偏好网络的交互式遗传算法,以刻画用户交互行为和偏好的不确定性,并提高算法的搜索性能. 首先,采用交互时间表示交互行为,考虑交互行为的不确定性,给出交互时间可信度的定义,并基于该定义,给出了用户不确定偏好的表达函数;其次,利用可信交互时间和偏好函数,定义了用户对评价对象的偏好权重,并利用该权重,设计(更新)可定量表示用户不确定偏好的可能性条件偏好网络,以更好地拟合用户偏好;然后,结合评价不确定性和可能性条件偏好网络,提出了改进的个体适应值估计策略,以更好地引导搜索. 最后,将所提算法应用于图书个性化搜索中,结果表明了算法搜索的可靠性和高效性.
Abstract:
Interactive evolutionary algorithms with user preference implicitly extracted from interactions of user are more powerful in alleviating user fatigue and improving the exploration in personalized search or recommendation. However, the uncertainties existing in user interactions and preferences have not been considered in the previous research, which will greatly impact the reliability of the extracted preference model, as well as the effective exploration of the evolution with that model. Therefore, an interactive genetic algorithm with probabilistic conditional preference networks (PCP-nets)is proposed , in which, the uncertainties are further figured out according to the interactions, and a PCP-net is designed to depict user preference model with higher accuracy by involving those uncertainties. First, the interaction time is adopted to mathematically describe the relationship between the interactions and user preference, and the reliability of the interaction time is further defined to reflect the interactive uncertainty.The preference function with evaluation uncertainty is established with the reliability of interaction time. Second, the preference weights on each interacted object are assigned on the basis of preference function and reliability. With these weights, the PCP-nets are designed and updated by involving the uncertainties into the preference model to improve the approximation. Third, a more accurate fitness function is delivered to assign fitness for the individuals. Last, the proposed algorithm is applied to a personalized book search and its superiority in exploration and feasibility is experimentally demonstrated.

相似文献/References:

[1]张恒艳,谢文博,赵阳,等.不确定T-S模糊系统的跟踪控制器设计[J].郑州大学学报(工学版),2016,37(02):15.[doi:10.3969/j.issn.1671-6833.201504057]
 Zhang Hengyan,Senior Zhongwen,Li Wenlong,et al.The Design of Tracking Controller for T-S Fuzzy Systems with Uncertainty[J].Journal of Zhengzhou University (Engineering Science),2016,37(06):15.[doi:10.3969/j.issn.1671-6833.201504057]
[2]孙晓燕,时良振,徐瑞东,等.基于区间样本和回声状态网络的风电功率不确定性预测[J].郑州大学学报(工学版),2017,38(01):56.[doi:10.13705/j.issn.1671-6833.2017.01.003]
 Sun Xiaoyan,Shi Liangzhen,Xu Ruidong,et al.Forecast of wind power generation with uncertainty based on interval sample and echo state network[J].Journal of Zhengzhou University (Engineering Science),2017,38(06):56.[doi:10.13705/j.issn.1671-6833.2017.01.003]
[3]彭金柱,卞英楠,周树亮.基于DRNN网络的轮式机器人鲁棒 Hi infinity 控制[J].郑州大学学报(工学版),2018,39(04):64.[doi:10.13705/j.issn.1671-6833.2018.01.016]
 Peng Jinzhu,Bian Yingnan,Zhou Shuliang.A Stable NRobust Control for Wheeled Robotic System Based on DRNN Network and H∞ Methods[J].Journal of Zhengzhou University (Engineering Science),2018,39(06):64.[doi:10.13705/j.issn.1671-6833.2018.01.016]
[4]朱春峰,刘琦,李东坤,等.一种基于ODDT的FDES复合因果链层次化解耦方法[J].郑州大学学报(工学版),2019,40(04):13.[doi:10.13705/j.issn.1671-6833.2019.04.030]
 Zhu Chunfeng,Liu Qi,Lee Dongkun,et al.A Hierarchical Decoupling Method of FDES Compound Causality Chain Based on ODDT[J].Journal of Zhengzhou University (Engineering Science),2019,40(06):13.[doi:10.13705/j.issn.1671-6833.2019.04.030]

更新日期/Last Update: