[1]崔岩,张子祥,时新,等.考虑顾客时间紧迫度的生鲜电商配送路径优化问题[J].郑州大学学报(工学版),2017,38(06):59-63.[doi:10.13705/j.issn.1671-6833.2017.06.008]
 Cui Yan,Zhang Zixiang,Shi Xin Wang Xiaoliang,et al.Fresh Agricultural E-commerce Product Routing Problem Considering Equally Desirable of Customer[J].Journal of Zhengzhou University (Engineering Science),2017,38(06):59-63.[doi:10.13705/j.issn.1671-6833.2017.06.008]
点击复制

考虑顾客时间紧迫度的生鲜电商配送路径优化问题()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
38
期数:
2017年06期
页码:
59-63
栏目:
出版日期:
2017-11-20

文章信息/Info

Title:
Fresh Agricultural E-commerce Product Routing Problem Considering Equally Desirable of Customer
作者:
崔岩张子祥时新王晓亮王振锋
河南农业大学机电工程学院,河南郑州,450002
Author(s):
Cui Yan; Zhang Zixiang; Shi Xin Wang Xiaoliang; Wang Zhenfeng
College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, Henan 450002
关键词:
累积前景理论车辆路径问题生鲜电商时间窗改进粒子群算法
Keywords:
DOI:
10.13705/j.issn.1671-6833.2017.06.008
文献标志码:
A
摘要:
针对不确定环境下生鲜电商路径优化问题,考虑客户决策的有限理性特点,以累积前景理论为基础,针对生鲜电商的特点,构造以货损成本、惩罚成本、运输成本最小为目标,以代理点需求、车辆装载质量和客户要求服务时间窗为约束,建立了生鲜电商配送路径优化模型。采用改进粒子群算法对模型进行求解。计算及试验结果表明:基于累积前景理论的模型能够更有效的满足客户对时间窗的要求,会相应的提高配送服务的满意度并在一定程度上提高企业效益,为生鲜电商企业优化配送路径提供理论支撑。
Abstract:
This paper aims to explore fresh agricultural product E-commerce routing problem under uncertain environment. Considering the characteristic of the bounded rational of customer decision, fresh agricultural E-commerce routing optimization model was established based on Cumulative Prospect Theory (CPT). According to the characteristics of fresh agricultural E-commerce supplier for fresh features, The model took the minimum cargo damage costs, transportation costs and the penalty costs as objective, the agents point demand, goods loading and times window of logistic services about customer requirements as constraints. An improved Particle Swarm Optimization algorithm was used to solve there parts of model respectively, reference examples. Simulation and test results showed that, the model based on CPT met customer requirements on time window more accurately and improved customer satisfaction.This studycould  provide theoretical support for the fresh E-commerce suppliers to optimize the distribution path.

相似文献/References:

[1]马欢张建伟赵进超.求解VRPSDP的变邻域混合遗传算法[J].郑州大学学报(工学版),2015,36(03):120.[doi:10.3969/ j. issn.1671 -6833.2015.03.026]
 MA Huan,ZHANG Jian-wei,ZHAO Jin-chao,et al.A Hybrid Genetic and Variable Neighborhood Descent Algorithm for VehicleRouting Problem with Simultaneous Delivery and Pickup[J].Journal of Zhengzhou University (Engineering Science),2015,36(06):120.[doi:10.3969/ j. issn.1671 -6833.2015.03.026]
[2]汪慎文,杨锋,徐亮,等.离散差分进化算法求解共享单车调度问题[J].郑州大学学报(工学版),2019,40(04):9.[doi:10.13705/j.issn.1671-6833.2019.04.022]
 Wang Shenwen,Yang Feng,Xu Liang,et al.Discrete differential evolution algorithm for solving shared bicycle scheduling problem[J].Journal of Zhengzhou University (Engineering Science),2019,40(06):9.[doi:10.13705/j.issn.1671-6833.2019.04.022]
[3]张雪妍,贺锋.基于累积前景理论的组合出行交通分配模型[J].郑州大学学报(工学版),2020,41(03):91.[doi:10.13705/j.issn.1671-6833.2020.02.004]
 Zhang Xueyan,He Feng.Traffic Assignment Model with Combined Modes based on Cumulative Prospect Theory[J].Journal of Zhengzhou University (Engineering Science),2020,41(06):91.[doi:10.13705/j.issn.1671-6833.2020.02.004]
[4]朱晓东,王鼎.求解双目标VRPTW的改进混合蚁群算法[J].郑州大学学报(工学版),2020,41(04):52.[doi:10.13705/j.issn.1671-6833.2020.04.004]
 ZHU Xiaodong,WANG Ding.An Improved Hybrid Ant Colony Algorithm for Bi-objective VRPTW[J].Journal of Zhengzhou University (Engineering Science),2020,41(06):52.[doi:10.13705/j.issn.1671-6833.2020.04.004]
[5]靳文舟,邓钦原,郝小妮,等.改进人工蜂群算法的农村DRT路径优化研究[J].郑州大学学报(工学版),2021,42(04):84.
 JIN Wenzhou,DENG Qinyuan,HAO Xiaoni,et al.Research on Route Optimization of Rural DRT Based on Improved ABC Algorithm[J].Journal of Zhengzhou University (Engineering Science),2021,42(06):84.

更新日期/Last Update: