[1]毛晓波,周晓东,刘艳红.基于FAST特征点改进的TLD目标跟踪算法[J].郑州大学学报(工学版),2018,39(02):1-5.[doi:10.13705/j.issn.1671-6833.2018.02.001]
 Mao Xiaobo,Zhou Xiaodong,Liu Yanhong.Improved TLD Object Tracking Algorithm Based On FAST Teature Points[J].Journal of Zhengzhou University (Engineering Science),2018,39(02):1-5.[doi:10.13705/j.issn.1671-6833.2018.02.001]
点击复制

基于FAST特征点改进的TLD目标跟踪算法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
39
期数:
2018年02期
页码:
1-5
栏目:
出版日期:
2018-03-30

文章信息/Info

Title:
Improved TLD Object Tracking Algorithm Based On FAST Teature Points
作者:
毛晓波周晓东刘艳红
郑州大学电气工程学院,河南郑州,450001
Author(s):
Mao Xiaobo Zhou Xiaodong Liu Yanhong
School of Electrical Engineering, Zhengzhou University, Zhengzhou, Henan 450001
关键词:
Keywords:
DOI:
10.13705/j.issn.1671-6833.2018.02.001
文献标志码:
A
摘要:
TLD是近年来出现的一种较为新颖的长时间目标跟踪算法,它与传统的跟踪算法区别在于将传统的检测算法和跟踪算法结合起来,通过学习模块来学习目标的特征,从而进行有效跟踪。笔者针对算法跟踪器无法可靠跟踪均匀选取的问题,提出一种基于FAST特征点改进的TLD目标跟踪算法,保证所选特征点能够被正确可靠跟踪,提高跟踪器的精度。针对跟踪过程中学习模块的模板累积效应明显,实时性降低的问题,采用一种动态模板管理机制。在模板数量达到阈值时,通过比较模板与当前目标的相似度,删除特定模板,保持模板数量的恒定。实验表明,改进后的算法具有更高的跟踪精度和实时性。
Abstract:
TLD was a new long-term object tracking algorithm in recent years. It is different from the traditional tracking algorithm in that it combined the traditional detection algorithm and the tracking algorithm , and then the learning module was used to study the characteristics of the object. In this paper,an improved TLD object tracking algorithm based on FAST feature points was proposed to ensure that the selected feature points could be tracked correctly and reliably to improve the accuracy of the tracker. At the same time, for the tracking process, the learning module template cumulative effect is obvious, reduced the real-time performance. Using a dynamic template management mechanism, when the number of templates reached the threshold, by comparing the similarity between the template and the current target, the specific template is deleted and the number of templates was kept constant. Experiments results showed that the improved algorithm had higher tracking precision and real - time performance.
更新日期/Last Update: 2018-04-01