[1]王杰,王禹博,朱晓东,等.融合人眼掩蔽效应和图像梯度的块效应评价方法[J].郑州大学学报(工学版),2019,40(03):7-12.[doi:10.13705/j.issn.1671-6833.2018.06.013]
 Wang Jie,Wang Yubo,Zhu Xiaodong,et al.A Blocking Artifacts Evaluation Method Based on Human Eye Masking Effect and Image Gradient[J].Journal of Zhengzhou University (Engineering Science),2019,40(03):7-12.[doi:10.13705/j.issn.1671-6833.2018.06.013]
点击复制

融合人眼掩蔽效应和图像梯度的块效应评价方法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
40
期数:
2019年03期
页码:
7-12
栏目:
出版日期:
2019-04-30

文章信息/Info

Title:
A Blocking Artifacts Evaluation Method Based on Human Eye Masking Effect and Image Gradient
作者:
王杰王禹博朱晓东任向阳
郑州大学电气工程学院
Author(s):
Wang JieWang YuboZhu XiaodongRen Xiangyang
School of Electrical Engineering, Zhengzhou University
关键词:
图像梯度人眼掩蔽效应DCT块效应单调一致性
Keywords:
image gradientHuman eye masking effectDCTblock effectmonotonic consistency
DOI:
10.13705/j.issn.1671-6833.2018.06.013
文献标志码:
A
摘要:
针对JPEG格式的图像采用分块离散余弦变换的压缩方式,易产生块效应,本文提出了一种高效的无参考块效应评价方法。首先对图像块边界处像素点的梯度进行变换得到图像块效应映射图(主要包括图像块效应边界的位置和强度信息);然后计算人眼对图像的亮度和纹理掩蔽效应将其结合到块效应映射图中得到显著性块效应映射图,并使用Minkowski法计算出图像块效应评价指标。最后,在LIVE等图像质量评价数据库中进行了大量的实验仿真。仿真结果中SROCC和KROCC达到了0.9、0.7以上.
Abstract:
Blocking artifacts are the result of block-based discrete cosine transform in JPEG coding .An efficient no-reference method to measure the blocking artifacts is proposed in this paper. Firstly, the gradient of the pixels at block boundaries is transformed into the blocking artifact map ,which mainly includes the positions and intensity information of blocking artifact boundaries. Then We computer the effects of luminance and texture masking on blocking and integrate them into the blocking artifact map to form an noticeable blocking artifacts map. Based on the noticeable blocking artifacts map, we use the Minkowski method to calculate the metric of image blocking artifacts. Finally experiments for several image quality assessment databases showed that the proposed metric provides high monotonous consistency with subjective blockiness scores and outperforms other existing mainstream blockiness metrics
更新日期/Last Update: 2019-04-16