[1]王守娜,刘弘,高开周.一种应用于函数优化问题的多种群人工蜂群算法[J].郑州大学学报(工学版),2018,39(06):30-35.[doi:10.13705/j.issn.1671-6833.2018.06.019]
 Wang Shouna,Liu Hong,Gao Kaizhou.A Multi-swarm Artificial Bee Colony Algorithm for Function Optimization[J].Journal of Zhengzhou University (Engineering Science),2018,39(06):30-35.[doi:10.13705/j.issn.1671-6833.2018.06.019]
点击复制

一种应用于函数优化问题的多种群人工蜂群算法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
39
期数:
2018年06期
页码:
30-35
栏目:
出版日期:
2018-10-24

文章信息/Info

Title:
A Multi-swarm Artificial Bee Colony Algorithm for Function Optimization
作者:
王守娜刘弘高开周
1. 山东师范大学信息科学与工程学院;2. 山东师范大学山东省分布式计算机软件新技术重点实验室;3. 南洋理工大学海事研究所
Author(s):
Wang Shouna 1Liu Hong1Gao Kaizhou 3
1. School of Information Science and Engineering, Shandong Normal University; 2. Shandong Provincial Key Laboratory of Distributed Computer Software New Technology, Shandong Normal University; 3. Maritime Research Institute, Nanyang Technological University
关键词:
人工蜂群算法种群分割蜜源位置更新适应度函数函数优化
Keywords:
Artificial bee colony algorithmpopulation segmentationhoney source location updatefitness functionfunction optimization
DOI:
10.13705/j.issn.1671-6833.2018.06.019
文献标志码:
A
摘要:
针对传统人工蜂群算法(ABC)收敛速度慢、易陷入局部最优等不足,提出一种基于种群分割的多种群人工蜂群算法(MABC)应用于函数优化问题.该算法利用K均值聚类算法中基于欧氏距离的方式对人工蜂群进行种群分割,在子种群中引入基于全局通信的蜜源位置更新方式加速算法收敛,同时引入基于局部通信的适应度函数扩展解方案的多样性.通过对6个标准测试函数的实验表明,MABC算法适应度高、收敛速度快,克服了ABC算法易陷入局部最优解等不足,在函数优化问题中表现出了更好的性能.
Abstract:
A multi-swarm Artificial Bee Colony(MABC)algorithm based on the segmentation of population was proposed in this paper. It was applied to function optimization to overcome the drawbacks of slow convergence and low computational accuracy of conventional ABC algorithm.  In this algorithm, K-means clustering algorithm based on Euclidean distance was introduced to divide the bee colony. In the subpopulation,  a method was introduced to update the location of nectar based on global communication to accelerate the convergence of the algorithm;and the fitness function based on local communication was introduced to expand the diversity of the solution. The simulation results of six standard functions show that the MABC algorithm can attain significant improvement on convergence rate and solution accuracy, and show better performance in function optimization problems when compared with the ABC algorithm.

相似文献/References:

[1]刘广瑞,王庆海,姚冬艳.基于改进人工蜂群算法的多无人机协同任务规划[J].郑州大学学报(工学版),2018,39(03):51.[doi:10.13705/j.issn.1671-6833.2017.06.026]
 Liu Guangrui,Wang Qinghai,Yao Dongyan.Multi-UAV Cooperative Mission Planning Based on Improved Artificial Bee Colony Algorithm[J].Journal of Zhengzhou University (Engineering Science),2018,39(06):51.[doi:10.13705/j.issn.1671-6833.2017.06.026]
[2]金叶,孙越泓,王加翠,等.基于单纯形的改进精英人工蜂群算法[J].郑州大学学报(工学版),2018,39(06):36.[doi:10.13705/j.issn.1671-6833.2018.06.008]
 Jin Ye,Sun Yuehongang Jiacui,Wang Dan.An Improved Multi-elitist Artificial Bee Colony Algorithm Based on Nelder-Mead Simplex Method[J].Journal of Zhengzhou University (Engineering Science),2018,39(06):36.[doi:10.13705/j.issn.1671-6833.2018.06.008]
[3]李佳华,马连博,王兴伟,等.基于多目标蜂群进化优化的微电网能量调度方法[J].郑州大学学报(工学版),2018,39(06):50.[doi:10.13705/j.issn.1671-6833.2018.06.020]
 Li Jiahua,Malembo,Wang Xingwei,et al.A Novel Multi-objective Artificial Bee Colony Algorithm for Microgrid Energy Dispatching Model[J].Journal of Zhengzhou University (Engineering Science),2018,39(06):50.[doi:10.13705/j.issn.1671-6833.2018.06.020]

更新日期/Last Update: 2018-10-25