[1]余琍,徐霜,万强.基于学习理论的改进粒子群优化算法[J].郑州大学学报(工学版),2019,40(02):32-37.[doi:10.13705/j.issn.1671-6833.2019.02.007]
 Xu Shuang,Wanqiang,Yu Li.Improved Particle Swarm Optimization Algorithm Based on Learning Theory[J].Journal of Zhengzhou University (Engineering Science),2019,40(02):32-37.[doi:10.13705/j.issn.1671-6833.2019.02.007]
点击复制

基于学习理论的改进粒子群优化算法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
40
期数:
2019年02期
页码:
32-37
栏目:
出版日期:
2019-03-19

文章信息/Info

Title:
Improved Particle Swarm Optimization Algorithm Based on Learning Theory
作者:
余琍徐霜万强
1. 武汉大学高新技术产业发展部;2. 武汉大学计算机学院
Author(s):
Xu Shuang 1Wanqiang 2Yu Li 2
1. Department of High-tech Industry Development, Wuhan University 2. School of Computer Science, Wuhan University
关键词:
粒子群算法最优化有效性测试函数
Keywords:
Particle swarm algorithmoptimizevaliditytest function
DOI:
10.13705/j.issn.1671-6833.2019.02.007
文献标志码:
A
摘要:
论文针对粒子群算法容易陷入局部最优的问题,提出基于学习理论的粒子群算法(L-PSO)。该算法通过为粒子群全局最准测试函数集上的测试证明了该算法的有效性。
Abstract:
Since PSO algorithm was easy to get trapped into local optimum,in this paper, based on the learning theory a mew PSO algorithm named as L-PSO was proposed. In L-PSO ,an integer value was set as the maximum cycle limitation for the global best particles,and propose a clustering grouping mutation mechanusm which could devude the particles into some sub-swarms,Then the competitive particle was used to replace the global optimum particle which could help jump out of the local optimum and improve the convergence speed. Experimental results on several benchmark test functions showed that L-PSO was very effective.

相似文献/References:

[1]严晶晶,阎新芳,冯岩.WSN中基于梯度和粒子群优化算法的分级簇算法[J].郑州大学学报(工学版),2016,37(02):33.[doi:10.3969/j.issn.1671-6833.201505017]
 Yan Xinfang,Yan Jingjing,Feng Yan.Gradient and Particle Swarm Optimization Based Hierarchical Cluster Algorithm in WSN[J].Journal of Zhengzhou University (Engineering Science),2016,37(02):33.[doi:10.3969/j.issn.1671-6833.201505017]
[2]曹奔,袁忠于,刘洪.基于粒子群算法的烧结炉系统辨识及神经网络控制[J].郑州大学学报(工学版),2017,38(05):39.[doi:10.13705/j.issn.1671-6833.2017.02.022]
 Cao Ben,Yuan Zhong,Yu Liu Hong.Sintering Furnace System Identification Based on Particle Swarm Algorithm and Neural Network Control[J].Journal of Zhengzhou University (Engineering Science),2017,38(02):39.[doi:10.13705/j.issn.1671-6833.2017.02.022]
[3]张伟伟,高奎,张卫正,等.基于成功历史自适应的混合克隆选择算法[J].郑州大学学报(工学版),2019,40(02):26.[doi:10.13705/j.issn.1671-6833.2018.05.018]
 Zhang Weiwei,Gao Kui,Zhang Weizheng,et al.An Improve Particle Swarm Optimization Algorithm Based on Learning Theory[J].Journal of Zhengzhou University (Engineering Science),2019,40(02):26.[doi:10.13705/j.issn.1671-6833.2018.05.018]
[4]薛金花,王德顺,郁正纲,等.基于风电可调节不确定代价的风光柴储联合优化调度[J].郑州大学学报(工学版),2019,40(05):72.[doi:10.13705/j.issn.1671-6833.2019.05.006]
 Xue Jinhua,Wang Deshun,Yu Zhenggang,et al.Combined Optimal Scheduling of Wind, Diesel and Storage Based on Adjustable Uncertain Cost of Wind Power[J].Journal of Zhengzhou University (Engineering Science),2019,40(02):72.[doi:10.13705/j.issn.1671-6833.2019.05.006]
[5]高岳林,武少华.基于自适应粒子群算法的机器人路径规划[J].郑州大学学报(工学版),2020,41(04):46.[doi:10.13705/j.issn.1671-6833.2020.01.004]
 GAO Yuelin,WU Shaohua.Robot Path Planning Based on Adaptive Particle Swarm Optimization[J].Journal of Zhengzhou University (Engineering Science),2020,41(02):46.[doi:10.13705/j.issn.1671-6833.2020.01.004]
[6]马细霞,储冬冬..粒子群优化算法在水库调度中的应用分析[J].郑州大学学报(工学版),2006,27(04):121.[doi:10.3969/j.issn.1671-6833.2006.04.029]
 Ma Xiaoxia,Storage winter winter.Application analysis of particle swarm optimization algorithm in reservoir scheduling [J].Journal of Zhengzhou University (Engineering Science),2006,27(02):121.[doi:10.3969/j.issn.1671-6833.2006.04.029]

更新日期/Last Update: 2019-03-24