[1] 胡梦月,胡志坚,仉梦林,等.基于改进AdaBoost.RT和KELM的风功率预测方法研究[J].电网技术,2017,41(2):536-542.[2] 黄辰,吴峻青.基于人工神经网络的短期风电功率预测[J]. 华东电力, 2014, 42(7):1408-1410.
[3] 张岚,张艳霞,郭嫦敏,等.基于神经网络的光伏系统发电功率预测[J].中国电力,2010,43(9):75-78.
[4] 朱永强,田军.最小二乘支持向量机在光伏功率预测中的应用[J].电网技术,2011,35(7):54-59.
[5] 陈昌松,段善旭,蔡涛,等.基于模糊识别的光伏发电短期预测系统[J].电工技术学报,2011,26(7):83-89.
[6] 代倩,段善旭,蔡涛,等.基于天气类型聚类识别的光伏系统短期无辐照度发电预测模型研究[J].中国电机工程学报,2011,31(34):28-35.
[7] 刘卫亮,刘长良,林永君,等.计及雾霾影响因素的光伏发电超短期功率预测[J].中国电机工程学报,2018,38(14):4086-4095,4315.
[8] MELLIT A,PAVAN A M.Performance prediction of 20 kWP grid-connected photovoltaic plant at Trieste (Italy) using artificial neural network[J]. Energy conversion and management,2010,51(12):2431-2441.
[9] 王晓兰,王明伟.基于小波分解和最小二乘支持向量机的短期风速预测[J].电网技术,2010,34(1):179-184.
[10] 谢吉洋,闫冬,谢垚,等.基于NARX神经网络的热负荷预测中关键影响因素分析[J].计算机应用,2018,38(11):3180-3187.
[11] 米增强,刘兴杰,张艳青,等.基于混沌分析和神经网络的风速直接多步预测[J].太阳能学报,2011,32(6):901-906.
[12] PLETT G L.Adaptive inverse control of linear and nonlinear systems using dynamic neural networks[J]. IEEE transactions on neural networks, 2003, 14(2): 360-376.
[13] 周品.MATLAB神经网络设计与应用[M].北京:清华大学出版社,2013.
[14] 赵唯嘉,张宁,康重庆,等.光伏发电出力的条件预测误差概率分布估计方法[J].电力系统自动化,2015,39(16):8-15.
[15] GUO M, LAN J H, LI J J, et al.Traffic flow data recovery algorithm based on gray residual GM(1,N)model[J].Journal of transportation systems engineering and information technology,2012,12(1):42-47.
[16] CHEN J L, LI G S, WU S J.Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration[J].Energy conversion and management,2013,75:311-318.