[1]闫李,李超,柴旭朝,等.基于多学习多目标鸽群优化的动态环境经济调度[J].郑州大学学报(工学版),2019,40(04):2.[doi:10.13705/j.issn.1671-6833.2019.04.023]
 Yan Li,Li Chao,Chai Xuchao,et al.Dynamic Economic Emission Dispatch Based On Multiple Learning Multi-objective Pigeon-inspired Optimization[J].Journal of Zhengzhou University (Engineering Science),2019,40(04):2.[doi:10.13705/j.issn.1671-6833.2019.04.023]
点击复制

基于多学习多目标鸽群优化的动态环境经济调度()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
40
期数:
2019年04期
页码:
2
栏目:
出版日期:
2019-07-10

文章信息/Info

Title:
Dynamic Economic Emission Dispatch Based On Multiple Learning Multi-objective Pigeon-inspired Optimization
作者:
闫李李超柴旭朝瞿博阳
中原工学院电子信息学院
Author(s):
Yan LiLi ChaoChai XuchaoQu Boyang
School of Electronic Information, Zhongyuan Institute of Technology
关键词:
环境经济调度多目标优化鸽群优化多学习小概率变异
Keywords:
Environmental economic dispatchMulti-objective optimizationPigeon flock optimizationlearn moresmall probability variation
DOI:
10.13705/j.issn.1671-6833.2019.04.023
文献标志码:
A
摘要:
针对电力系统动态环境经济调度(DEED)问题,本文提出了一种基于多学习策略的多目标鸽群优化(MLMPIO)算法。在多学习策略中,种群个体可以向外部存档集中的多个全局最优位置以及个体的历史最优位置进行学习,进而保持种群的多样性和全局搜索能力,避免陷入早熟收敛;引入了小概率变异扰动机制,来进一步增强种群的多样性和搜索能力;为提升算法的运行效率,采用容量自适应变化的外部存档集来存储当前Pareto最优解集。为验证所提算法的性能,将MLMPIO应用于10机组电力系统的DEED问题求解;仿真结果证明了MLMPIO算法解决此类问题的可行性和有效性。
Abstract:
For solving the dynamic economic emission dispatch problem (DEED), a multiple learning based multi-objective pigeon-inspired optimization (MLMPIO) algorithm is proposed in this paper. In the proposed multiple learning strategy, individuals of the population are allowed to learn from multiple global best positions of the external archive and from the personal historical best positions. This learning strategy enables the preservation of diversity and global search ability of the population to prevent premature convergence. Meanwhile, small probability mutation is introduced to MLMPIO to enhance the swarm diversity and search ability further. The external archive with adaptive changing capacity is used to store the current Pareto optimal solutions. To verify the performance of the proposed method, the DEED problem of the IEEE 10-generator power system has been solved. And the results demonstrate the feasibility and effectiveness of the proposed method

相似文献/References:

[1]肖俊明.周谦,瞿博阳,韦学辉.多目标进化算法及其在电力环境经济调度中的应用综述[J].郑州大学学报(工学版),2016,37(02):1.[doi:Multi-objective Evolutionary Algorithm and Its Ap]
 Xiao Junming,Zhou Qian,Qu Boyang,et al.Multi-objective Evolutionary Algorithm and Its Application in Electric Power Environment Economic Dispatch[J].Journal of Zhengzhou University (Engineering Science),2016,37(04):1.[doi:Multi-objective Evolutionary Algorithm and Its Ap]
[2]王志,王朝雅,杨飞.弹性底板上的液压支架整体尺寸参数优化[J].郑州大学学报(工学版),2017,38(03):73.[doi:10.13705/j.issn.1671-6833.2016.06.002]
 Wang Zhichao,Ya Yangfei.Overall Parameter Optimizes of the Hydraulic Support on the Elastic Foundation[J].Journal of Zhengzhou University (Engineering Science),2017,38(04):73.[doi:10.13705/j.issn.1671-6833.2016.06.002]
[3]李佳华,马连博,王兴伟,等.基于多目标蜂群进化优化的微电网能量调度方法[J].郑州大学学报(工学版),2018,39(06):50.[doi:10.13705/j.issn.1671-6833.2018.06.020]
 Li Jiahua,Malembo,Wang Xingwei,et al.A Novel Multi-objective Artificial Bee Colony Algorithm for Microgrid Energy Dispatching Model[J].Journal of Zhengzhou University (Engineering Science),2018,39(04):50.[doi:10.13705/j.issn.1671-6833.2018.06.020]
[4]章健,熊壮壮,王明东,等.基于二阶锥规划的主动配电网动态无功优化[J].郑州大学学报(工学版),2019,40(01):32.[doi:10.13705/j.issn.1671-6833.2019.01.003]
 Zhang Jian,Bear strong,Wang Mingdong,et al.Dynamic Reactive Power Optimization in Active Distribution Network Based on Second-Order Cone Programming[J].Journal of Zhengzhou University (Engineering Science),2019,40(04):32.[doi:10.13705/j.issn.1671-6833.2019.01.003]
[5]刘可,巩敦卫.用于指尖定位的多目标分布估计算法[J].郑州大学学报(工学版),2019,40(04):12.[doi:10.13705/j.issn.1671-6833.2019.04.011]
 Liu Ke,Gong Dunwei.A Multi-objective Estimation of Distribution Algorithm for the Fingertip Localization[J].Journal of Zhengzhou University (Engineering Science),2019,40(04):12.[doi:10.13705/j.issn.1671-6833.2019.04.011]
[6]朱晓东,王颖,杨之乐,等.启发式多目标优化算法在能源和电力系统中的典型应用综述[J].郑州大学学报(工学版),2019,40(05):1.[doi:10.13705/j.issn.1671-6833.2019.05.010]
 Zhu Xiaodong,Wang Ying Young Joy Guo Yuanjun.A review of typical applications of heuristic multi-objective optimization algorithms in energy and power systems[J].Journal of Zhengzhou University (Engineering Science),2019,40(04):1.[doi:10.13705/j.issn.1671-6833.2019.05.010]
[7]张茂清,汪镭,崔志华,等.基于混合策略的快速非支配排序算法II[J].郑州大学学报(工学版),2020,41(04):23.[doi:10.13705/j.issn.1671-6833.2020.04.007]
 ZHANG Maoqing,WANG Lei,CUI Zhihua,et al.Fast Non-dominated Sorting Genetic Algorithm II Based on Hybrid Strategies[J].Journal of Zhengzhou University (Engineering Science),2020,41(04):23.[doi:10.13705/j.issn.1671-6833.2020.04.007]
[8]华一村,刘奇奇,郝矿荣,等.非规则Pareto前沿面多目标进化优化算法研究综述[J].郑州大学学报(工学版),2021,42(01):1.[doi:10.13705/j.issn.1671-6833.2021.01.001]
 HUA Yicun,LIU Qiqi,HAO Kuangrong,et al.A Survey of Evolutionary Algorithms for Multi-objective Optimization Problems with Irregular Pareto Fronts[J].Journal of Zhengzhou University (Engineering Science),2021,42(04):1.[doi:10.13705/j.issn.1671-6833.2021.01.001]
[9]刘家学,李文华,朱铁稳.飞机元器件可靠性的优化模型[J].郑州大学学报(工学版),1998,19(02):115.
 [J].Journal of Zhengzhou University (Engineering Science),1998,19(04):115.

更新日期/Last Update: 2019-07-28