[1] YAO Y,ZHAO W X,WANG Y,et al.Version-aware rating prediction for mobile app recommendation[J].ACM transactions on information systems,2017,35(4):38.[2] CHAPELLE O,MANAVOGLU E,ROSALES R.Simple and scalable response prediction for display advertising[J].ACM transactions on intelligent systems and technology,2015,5(4):1-34.
[3] CHENG H T,ISPIR M,ANIL R,et al.Wide & deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems-DLRS 2016.New York:ACM,2016:7-10.
[4] RENDLE S. Factorization machines[C]//2020 IEEE International Conference on Data Mining. New York: IEEE, 2011:995-1000.
[5] JUAN Y,ZHUANG Y,CHIN W S,et al.Field-aware factorization machines for CTR prediction[C]//Proceedings of the 10th ACM Conference on Recommender Systems.New York:ACM,2016:43-50.
[6] QU Y R, CAI H, REN K, et al. Product-based neural networks for user response prediction[C]//IEEE International Conference on Data Mining. New York: IEEE, 2016: 1149-1154.
[7] WANG R X,FU B,FU G,et al.Deep & cross network for ad click predictions[C]//Proceedings of the ADKDD′17. New York:ACM,2017:1-7.
[8] CHANG Y W, HSIEH C J, CHANG K W, et al. Training and testing low-degree polynomial data mappings via linear SVM[J]. Journal of machine learning research, 2010,11(11):1471-1490.
[9] KASAP Ö Y,TUNGA M A.A polynomial modeling based algorithm in top-N recommendation[J].Expert systems with applications,2017,79:313-321.
[10] 孙晓燕,朱利霞,陈杨. 基于可能性条件偏好网络的交互式遗传算法及其应用[J]. 郑州大学学报(工学版), 2017,38(6):1-5.
[11] SUN X Y,GONG D W,JIN Y C,et al.A new surrogate-assisted interactive genetic algorithm with weighted semisupervised learning[J].IEEE transactions on cybernetics,2013,43(2):685-698.
[12] ZHU J,SHAN Y,MAO J C,et al.Deep embedding forest:forest-based serving with deep embedding features[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2017:1703-1711.
[13] LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553):436-444.
[14] BOWERS S, BOWERS S, BOWERS S, et al. Practical lessons from predicting clicks on ads at facebook: eighth international workshop on data mining for online advertising[C]//Eighth International Workshop on Data Mining for Online Advertising. New York:ACM, 2014:1-9.
[15] RENDLE S.Factorization machines with libFM[J].ACM transactions on intelligent systems and technology,2012,3(3):1-22.
[16] BLONDEL M, FUJINO A, UEDA N, et al. Higher-order factorization machines[C]//International Conference on Neural Information Processing Systems. Massachusettc:MIT, 2016:3359-3367.
[17] XIAO J,YE H,HE X N,et al.Attentional factorization machines:learning the weight of feature interactions via attention networks[C]//Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence.Melboerne:IJCAI,2017:3119-3125.
[18] HINTON G E,DENG L,YU D,et al.Deep neural networks for acoustic modeling in speech recognition:the shared views of four research groups[J].IEEE signal processing magazine,2012,29(6):82-97.
[19] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].(2015-04-10)[2020-02-04].https://arxiv.org/abs/1409.1556.
[20] NIU Y,LU Z,WEN J,et al.Multi-modal multi-scale deep learning for large-scale image annotation[J].IEEE transactions on image processing,2019,28(4):1720-1731.
[21] ZHANG W N,DU T M,WANG J.Deep learning over multi-field categorical data[M]//Lecture Notes in Computer Science.Cham:Springer International Publishing,2016:45-57.