[1]房占鹏,张孟珂,李宏伟.平稳随机激励下约束阻尼结构布局优化设计[J].郑州大学学报(工学版),2020,41(05):87-91.[doi:10.13705/j.issn.1671-6833.2020.02.025]
 FANG Zhanpeng,ZHANG Mengke,LI Hongwei.Layout Optimization of Constrained Layer Damping Structure under Stationary Random Excitation[J].Journal of Zhengzhou University (Engineering Science),2020,41(05):87-91.[doi:10.13705/j.issn.1671-6833.2020.02.025]
点击复制

平稳随机激励下约束阻尼结构布局优化设计()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
41
期数:
2020年05期
页码:
87-91
栏目:
出版日期:
2020-10-01

文章信息/Info

Title:
Layout Optimization of Constrained Layer Damping Structure under Stationary Random Excitation
作者:
房占鹏张孟珂李宏伟
郑州轻工业大学机电工程学院,河南郑州450002, 伦敦玛丽女王大学电子工程与计算机科学学院,英国伦敦E1 4NS

Author(s):
FANG Zhanpeng1 ZHANG Mengke2 LI Hongwei1
1.School of Mechanical and Electrical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; 2.School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, United Kingdom
关键词:
Keywords:
stationary random excitation sensitivity analysis constrained layer damping topology optimization method of moving asymptote
DOI:
10.13705/j.issn.1671-6833.2020.02.025
文献标志码:
A
摘要:
针对平稳随机激励下约束阻尼结构布局优化问题,采用虛拟激励法对平稳随机激励下约束阻尼结构振动响应进行分析。以平稳随机激励下约束阻尼结构位移响应均方根值最小化为优化目标,约束阻尼材料体积为约束条件,建立约束阻尼结构的拓扑优化模型。提出复模态叠加法和伴随法相结合的灵敏度分析方法,以提高灵敏度计算效率。采用移动渐近线法(MMA)对建立的拓扑优化模型进行求解。通过算例分析,验证了提出的平稳随机激励下约束阻尼结构布局优化方法的正确性和有效性。
Abstract:
Aimed to solve the problems of optimization design of constrained layer damping (CLD) structures under stationary random excitation, the vibration response of CLD structures under stationary random excitation was analyzed by using pseudo excitation method (PEM). The topology optimization model of CLD structures was established by minimizing the root mean square value of the displacement response of the CLD structures under stationary random excitation and taking the volume of the CLD materials as the constraint condition. To circumvent the computational expensive of the sensitivity analysis, an efficient optimization procedure integrating the complex modal superposition method and the adjoint method was proposed. The topology optimization model was solved by method of moving asymptotes (MMA). The numerical examples demonstrated that the proposed optimization procedure of CLD structures under stationary random excitation was of validity and effectiveness.

参考文献/References:

[1] 伍先俊.约束阻尼结构阻尼效果的有限元预测方法研究 [J].噪声与振动控制,2019,39(1):205-209,234.

[2] 窦松然,桂洪斌,李承豪,等.圆柱壳振动控制中的约束阻尼拓扑优化研究 [J]. 振动与冲击,2015,34(22):149-153.
[3] ALFOUNEH M,TONG L Y. Maximizing modal damping in layered structures via multi-objective topology optimization [J]. Engineering structures,2017,132:637-647.
[4] 贺红林,陶结.约束阻尼板增材式拓扑渐进法减振动力学优化 [J].机械科学与技术,2017,36(6):972-977.
[5] LIU Q M,RUAN D,HUANG X D. Topology optimization of viscoelastic materials on damping and frequency of macrostructures [J]. Computer methods in applied mechanics and engineering,2018,337:305-323.
[6] 徐伟,张志飞,庾鲁思,等.附加自由阻尼板阻尼材料降噪拓扑优化 [J].振动与冲击,2017,36(11):192-198,223.
[7] 张宇,杨家友,韦正.基于阻尼层拓扑优化的车内噪声控制 [J].噪声与振动控制,2018,38(6):101-104.
[8] FANG Z P,ZHENG L. Topology optimization for minimizing the resonant response of plates with constrained layer damping treatment [J].Journal of vibroengineering,2015,17(6):2763-2780.
[9] TAKEZAWA A,DAIFUKU M,NAKANO Y,et al. Topology optimization of damping material for reducing resonance response based on complex dynamic compliance [J].Journal of sound and vibration,2016,365:230-243.
[10] SHI J X,HIRANO R,SHIMODA M. Design optimization of damping material-inlaid plates for vibration control [J].Composite structures,2016,148:50-58.
[11] YUN K S,YOUN S K. Multi-material topology optimization of viscoelastically damped structures under time-dependent loading [J].Finite elements in analysis and design,2017,123:9-18.
[12] 侯俊剑,房占鹏,何文斌.基于位移响应最小化的约束阻尼结构优化设计 [J].郑州大学学报(工学版),2017,38(3):87-91.
[13] ZHANG W H,LIU H,GAO T. Topology optimization of large-scale structures subjected to stationary random excitation:an efficient optimization procedure integrating pseudo excitation method and mode acceleration method [J]. Composite & structures,2015,158:61-70.
[14] LIN J H,ZHAO Y,ZHANG Y H. Accurate and highly efficient algorithms for structural stationary/non-stationary random responses [J].Computer methods in applied mechanics and engineering,2001,191(1/2):103-111.

相似文献/References:

[1]徐海升,杨许召,赵建宏,等.一级连串反应系统灵敏度分析[J].郑州大学学报(工学版),2004,25(03):9.[doi:10.3969/j.issn.1671-6833.2004.03.003]
 XU Haisheng,Yang Xuzhao,ZHAO Jianhong,et al.Sensitivity analysis of first-order serial reaction systems[J].Journal of Zhengzhou University (Engineering Science),2004,25(05):9.[doi:10.3969/j.issn.1671-6833.2004.03.003]

更新日期/Last Update: 2020-10-23