[1]魏宏彬,张端金,杜广明,等.基于改进型YOLO v3的蔬菜识别算法[J].郑州大学学报(工学版),2020,41(02):7-12.[doi:10.13705/j.issn.1671-6833.2020.03.002]
Wei Hongbin,Zhang Duanjin,Du Guangming,et al.Vegetable Detection Algorithm Based on Improved YOLO v3[J].Journal of Zhengzhou University (Engineering Science),2020,41(02):7-12.[doi:10.13705/j.issn.1671-6833.2020.03.002]
点击复制
基于改进型YOLO v3的蔬菜识别算法()
《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]
- 卷:
-
41
- 期数:
-
2020年02期
- 页码:
-
7-12
- 栏目:
-
- 出版日期:
-
2020-05-31
文章信息/Info
- Title:
-
Vegetable Detection Algorithm Based on Improved YOLO v3
- 作者:
-
魏宏彬; 张端金; 杜广明; 肖文福
-
郑州大学信息工程学院
- Author(s):
-
Wei Hongbin; Zhang Duanjin; Du Guangming; Xiao Wenfu
-
School of Information Engineering, Zhengzhou University
-
- 关键词:
-
蔬菜识别; K-means; 卷积神经网络; 特征金字塔; YOLOv3
- Keywords:
-
Vegetable identification; K-means; convolutional neural network; feature pyramid; YOLOv3
- DOI:
-
10.13705/j.issn.1671-6833.2020.03.002
- 文献标志码:
-
A
- 摘要:
-
针对超市的散装蔬菜区排队称重问题(称重设备能够自动识别蔬菜种类将有效地提高超市的 运行效率),提出一种基于改进型 YOLOv3的蔬菜识别方法。 首先,利用高清摄像头以及网络爬虫技术 采集蔬菜图片;其次,通过 K-means 聚类分析得到 15组适应于蔬菜数据集的先验框;再次,采用一种新 的边界框回归损失函数 DIoU 来提高检测任务的精度;最后,因蔬菜数据集中的大目标较多,通过增强特 征提取网络,获取 5组不同尺度的特征构成特征金字塔从而实现蔬菜识别任务。 改进型YOLOv3算法 在测试集上的平均精度 mPA 达到 93.2%,识别速度是 35f·s-1。 该方法在保证实时检测目标的同时提 升了识别的平均精度。
- Abstract:
-
The queuing and weighing problem was common in bulk vegetable area of supermarket. If weighingequipment could automatically recognize vegetable, it would effectively improve the operational efficiency ofsupermarket. Therefore, a vegetable recognition method based on improved YOLOv3 was proposed. Firstly ,vegetable pictures were collected by using high-definition camera and web crawler technology. Secondly, 15groups of anchors suitable for vegetable datasets were obtained by K -means clustering analysis. Thirdly, a newbounding box regression loss function DIoU was proposed to improve the precision of detection task. Finally, asthere were many large objects in vegetable datasets, 5 groups of feature pyramids with different scales were ob-tained by enhancing feature extraction network to realize vegetable detection task. The mAP of the improvedYOLOv3 algorithm on the test dataset was 93. 2%, and the recognition rate was 35 fps. This method improvedthe recognition of mAP while guaranteeing real-time object detection.
更新日期/Last Update:
2020-05-30