[1]徐刚,梁帅,刘武发,等.流动聚焦型微流控芯片微通道结构优化[J].郑州大学学报(工学版),2020,41(04):87-91.[doi:10.13705/j.issn.1671-6833.2020.04.003]
 XU Gang,LIANG Shuai,LIU Wufa,et al.Optimization of Micro-channel Structure of Flow Focusing Microfluidic Chip[J].Journal of Zhengzhou University (Engineering Science),2020,41(04):87-91.[doi:10.13705/j.issn.1671-6833.2020.04.003]
点击复制

流动聚焦型微流控芯片微通道结构优化()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
41
期数:
2020年04期
页码:
87-91
栏目:
出版日期:
2020-08-12

文章信息/Info

Title:
Optimization of Micro-channel Structure of Flow Focusing Microfluidic Chip
作者:
徐刚梁帅刘武发郑鹏
1. 郑州大学机械与动力工程学院2. 广东顺德创新设计研究院
Author(s):
XU Gang12LIANG Shuai2LIU Wufa1ZHENG Peng1
1.School of Mechanical and Power Engineering,Zhengzhou University,Zhengzhou 450001,China;2.Guangdong Shunde Innovation Design Institute,Foshan 528311,China
关键词:
微流控芯片' target="_blank" rel="external">">微流控芯片通道结构正交设计法TOPSIS解法
Keywords:
microfluidic chipchannel structureorthogonal design methodTOPSIS
DOI:
10.13705/j.issn.1671-6833.2020.04.003
文献标志码:
A
摘要:
利用正交实验设计法,对16种不同尺寸的微流控芯片进行微滴生成的数值模拟研究,并使用理想解法对仿真结果进行综合分析。探究一种单个液滴生成周期短,消耗连续相试剂量小,加工成本低的微流控芯片。结果表明,当连续相通道尺寸为40μm,离散相通道尺寸为30μm,十字出口通道尺寸为25μm,通道深度为20μm时可以得到最优尺寸结构的微流控芯片。
Abstract:
This study aimed to explore a microfluidic chip that could generate a single droplet with a short cycle,consume a small amount of continuous phase reagents,and have low processing costs.The FLUENT simulation and VOF method were employed to simulate 16 microfluidic chips with different structure sizes in orthogonal experiments.Finally,the TOPSIS was used to comprehensively evaluate the numerical simulation results,and the order of superiority and inferiority of 16 structures was obtained.The evaluation results showed that a microfluidic chip with the optimal size structure could be obtained under the conditons of the continuous phase channel size was 40 μm,the discrete phase channel size was 30 μm,the cross exit channel size was 25 μm and the channel depth was 20 μm.The microfluidic chip could be produced the performance with smaller droplets,highest frequency and consumes less continuous phase reagent per unit time.

参考文献/References:

[1] 余明芬,曾洪梅,张桦,等.微流控芯片技术研究概况及其应用进展[J].植物保护,2014,40(4):1-8.

[2] 林炳承.微流控芯片的研究及产业化[J].分析化学,2016,44(4):491-499.
[3] ZHU P,WANG L P.Passive and active droplet generation with microfluidics:a review[J].Lab on a chip,2016,17(1):34-75.
[4] HE P Y,BARTHES-BIESEL D,LECLERC E.Flow of two immiscible liquids with low viscosity in Y shaped microfluidic systems:effect of geometry[J].Microfluidics and nanofluidics,2010,9(2/3):293-301.
[5] 刘赵淼,杨洋.几何构型对流动聚焦生成微液滴的影响[J].力学学报,2016,48(4):867-876.
[6] CHOI D,LEE E,KIM S J,et al.Passive droplet generation in aqueous two-phase systems with a variable-width microchannel[J].Soft matter,2019,15(23):4647-4655.
[7] HAN W B,CHEN X Y,WU Z L,et al.Three-dimensional numerical simulation of droplet formation in a microfluidic flow-focusing device[J].Journal of the brazilian society of mechanical sciences and engineering,2019,41(6):265.
[8] 王维萌,马一萍,陈斌.十字交叉微通道内微液滴生成过程的数值模拟[J].化工学报,2015,66(5):1633-1641.
[9] 薛城,祝宝山,刘小兵,等.基于叶片载荷分布的离心泵正交优化设计[J].工程热物理学报,2019,40(5):1065-1071.
[10] REN X H,FAN H Q,ZHAO Y W,et al.Flexible lead-free BiFeO3/PDMS-based nanogenerator as piezoe-lectric energy harvester[J].ACS applied materials &interfaces,2016,39(8):26190-26197.
[11] 张森,冯继宏,张弘,等.数字PCR中微滴生成尺寸与频率的数值模拟[J].北京生物医学工程,2017,36(4):361-365.
[12] 丁奕文,刘向东,张程宾.十字型微通道中乳液流变行为的数值模拟[J].化工进展,2017,36(增刊1):43-50.
[13] CHEN X M,GLAWDEL T,CUI N W,et al.Model of droplet generation in flow focusing generators operating in the squeezing regime[J].Microfluidics and nanofluidics,2015,18(5/6):1341-1353.
[14] 岳军委.基于加权理想解法的沥青抗老化性能评价[J].筑路机械与施工机械化,2018,35(3):83-86,91.

相似文献/References:

[1]左敏,徐泽龙,张青川,等.基于双维度中文语义分析的食品领域知识库问答[J].郑州大学学报(工学版),2020,41(03):8.[doi:10.13705/j.issn.1671-6833.2020.02.003]
 Zuo Min,Xu Zelong,Zhang Qingchuan,et al.A question answering model over food domain knowledge base from two-dimensional Chinese semantic analysis[J].Journal of Zhengzhou University (Engineering Science),2020,41(04):8.[doi:10.13705/j.issn.1671-6833.2020.02.003]
[2]韩华强,陈生水,王占军,等.母岩变形特性差异对堆石料力学性质的影响[J].郑州大学学报(工学版),2020,41(03):67.[doi:10.13705/j.issn.1671-6833.2020.02.017]
 Hanwha StrongChen ShengshuiWang ZhanjunZheng ChengfengFu Hua.Influence of deformation characteristics of mother rock on mechanical properties of rockfill materials[J].Journal of Zhengzhou University (Engineering Science),2020,41(04):67.[doi:10.13705/j.issn.1671-6833.2020.02.017]
[3]张三川,苗帅宾.基于热仿真的动力电池箱结构紧凑化参数优化[J].郑州大学学报(工学版),2020,41(03):37.[doi:10.13705/j.issn.1671-6833.2019.05.020]
 Zhang Sanchuan,Miao Shuaibin.Research on Structural Parameter Design Based on Thermal Simulation for High Density Displacement Power Battery Box[J].Journal of Zhengzhou University (Engineering Science),2020,41(04):37.[doi:10.13705/j.issn.1671-6833.2019.05.020]
[4]乐金朝,张世兴,乐明静,等.不同损伤度和愈合温度条件下沥青胶浆自愈合行为研究[J].郑州大学学报(工学版),2020,41(04):12.[doi:10.13705/j.issn.1671-6833.2019.04.007]
 YUE Jinchao,ZHANG Shixing,YUE Mingjing,et al.Study on Self-healing Behavior of Asphalt Mastic under Different Damage Degree and Healing Temperature[J].Journal of Zhengzhou University (Engineering Science),2020,41(04):12.[doi:10.13705/j.issn.1671-6833.2019.04.007]
[5]欧阳海滨,全永彬,高立群,等.基于混合遗传粒子群优化算法的层次路径规划方法[J].郑州大学学报(工学版),2020,41(04):34.[doi:10.13705/j.issn.1671-6833.2020.01.011]
 OUYANG Haibin,QUAN Yongbin,GAO Liqun,et al.Hierarchical Path Planning Method for Mobile Robots Based on Hybrid Genetic Particle Swarm Optimization Algorithm[J].Journal of Zhengzhou University (Engineering Science),2020,41(04):34.[doi:10.13705/j.issn.1671-6833.2020.01.011]
[6]王丙琛,司怀伟,谭国真.基于深度强化学习的自动驾驶车控制算法研究[J].郑州大学学报(工学版),2020,41(04):41.[doi:10.13705/j.issn.1671-6833.2020.04.002]
 WANG Bingchen,SI Huaiwei,TAN Guozhen.Research on Autopilot Control Algorithms Based on Deep Reinforcement Learning[J].Journal of Zhengzhou University (Engineering Science),2020,41(04):41.[doi:10.13705/j.issn.1671-6833.2020.04.002]
[7]贺占蜀,陈雷,王武军,等.基于ABAQUS的中央电气接线盒温度场分析[J].郑州大学学报(工学版),2020,41(04):68.[doi:10.13705/j.issn.1671-6833.2020.04.001]
 HE Zhanshu,CHEN Lei,WANG Wujun,et al.Analysis of Temperature Field for Central Electric Junction Box Based on ABAQUS[J].Journal of Zhengzhou University (Engineering Science),2020,41(04):68.[doi:10.13705/j.issn.1671-6833.2020.04.001]
[8]邹卫华,刘鹏磊,刘秋节,等.磁性活性炭对水体中磺胺嘧啶钠的吸附机理研究[J].郑州大学学报(工学版),2020,41(04):92.[doi:10.13705/j.issn.1671-6833.2020.01.008]
 ZOU Weihua,LIU Penglei,LIU Qiujie,et al.Investigation into the Adsorption Mechanism of Sulfadiazine Sodium in Aqueous Solution Using Magnetic Biochar[J].Journal of Zhengzhou University (Engineering Science),2020,41(04):92.[doi:10.13705/j.issn.1671-6833.2020.01.008]
[9]严亚丹,李杨,仝佩.基于修正通行能力的出入口位置优化方法[J].郑州大学学报(工学版),2020,41(04):7.[doi:10.13705/j.issn.1671-6833.2020.01.009]
 YAN Yadan,LI Yang,TONG Pei.Optimization Method of Road Access Location Based on Modified Capacity[J].Journal of Zhengzhou University (Engineering Science),2020,41(04):7.[doi:10.13705/j.issn.1671-6833.2020.01.009]
[10]王复明,何 航,方宏远,等.交通和运行荷载耦合作用下管道承插口力学响应研究[J].郑州大学学报(工学版),2020,41(04):1.[doi:10.13705/j.issn.1671-6833.2020.01.012]
 WANG Fuming,HE Hang,FANG Hongyuan,et al.Mechanical Analysis of The bell-and-spigot Joints of Pipeline Under The Coupling of Traffic and Running Load[J].Journal of Zhengzhou University (Engineering Science),2020,41(04):1.[doi:10.13705/j.issn.1671-6833.2020.01.012]

更新日期/Last Update: 2020-10-06