参考文献/References:
[1] 雷德明, 严新平. 多目标智能优化方法及其应用[M]. 北京: 科学出版社, 2009.
[2] ZHANG C J, TAN K C, LEE L H, et al. Adjust weight vectors in MOEA/D for bi-objective optimi-zation problems with discontinuous Pareto fronts[J]. Soft computing-a fusion of foundations, methodologies and applications, 2018, 22(12):3997-4012.
[3] ISHIBUCHI H, MASUDA H, NOJIMA Y. Pareto fronts of many-objective degenerate test problems[J]. IEEE transactions on evolutionary computation, 2016, 20(5):807-813.
[4] JAIN H, DEB K. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach[J]. IEEE transactions on evolutionary computation, 2014, 18(4):602-622.
[5] HUA Y, JIN Y, HAO K. A clustering-based adaptive evolutionary algorithm for multiobjective optimization with irregular Pareto fronts[J]. IEEE transactions on cybernetics, 2019, 49(7): 2758-2770.
[6] BADER J, ZITZLER E. HypE: an algorithm for fast hypervolume-based many-objective optimization[J]. Evolutionary computation, 2011, 19(1):45-76.
[7] QI Y T, MA X L, LIU F, et al. MOEA/D with adaptive weight adjustment[J]. Evolutionary computation, 2014, 22(2):231-264.
[8] ANTONIO L M, COELLO C A C. Coevolutionary multiobjective evolutionary algorithms: survey of the state-of-the-art[J]. IEEE transactions on evolutionary computation, 2018, 22 (6):851-865.
[9] DAS I, DENNIS J E. Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems[J]. SIAM journal on optimization, 1998, 8(3):631-657.
[10] WANG H D, HE S, YAO X. Nadir point estimation for many-objective optimization problems based on emphasized critical regions[J]. Soft computing, 2017, 21(9):2283-2295.
[11] DEB K, THIELE L, LAUMANNS M, et al. Scalable test problems for evolutionary multiobjective optimization[J]. Evolutionary multiobjective optimization, 2005:105-145.
[12] JAIN H, DEB K. An improved adaptive approach for elitist nondominated sorting genetic algorithm for many-objective optimization[J] Evolutionary multi-criterion optimization, 2013, 7811:307-321.
[13] HUBAND S, BARONE L, WHILE L, et al. A scalable multi-objective test problem toolkit[J]. Lecture notes in computer science, 2005, 3410:280-295.
[14] CHENG R, LI M Q, TIAN Y, et al. A benchmark test suite for evolutionary many-objective optimization[J]. Complex & intelligent systems, 2017, 3(1):67-81.
[15] ZHANG Q F, ZHOU A, ZHAO S Z, et al. Multiobjective optimization test instances for the CEC 2009 special session and competition[J]. Mechanical engineering,2008,8:16283.
[16] YU G, CHAI T Y, LUO X C. Multiobjective production planning optimization using hybrid evolutionary algorithms for mineral processing[J]. IEEE transactions on evolutionary computation, 2011, 15(4):487-514.
[17] SAXENA D K, DURO J A, TIWARI A, et al. Objective reduction in many-objective optimization: linear and nonlinear algorithms[J]. IEEE transactions on evolutionary computation, 2013, 17(1):77-99.
[18] CHENG R, JIN Y C, NARUKAWA K. Adaptive reference vector generation for inverse model based evolutionary multiobjective optimization with degenerate and disconnected Pareto fronts[J]. Evolutionary multi-criterion optimization, 2015, 9018:127-140.
[19] CHENG R, JIN Y C, OLHOFER M, et al. A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE transactions on evolutionary computation, 2016, 20(5):773-791.
[20] XU H, ZENG W H, ZHANG D, et al. MOEA/HD: a multiobjective evolutionary algorithm based on hierarchical decomposition[J]. IEEE transactions on cybernetics, 2019, 49(2): 517-526.
[21] CAI X Y, MEI Z, FAN Z. A decomposition-based many-objective evolutionary algorithm with two types of adjustments for direction vectors[J]. IEEE transactions on cybernetics, 2018, 48(8):2335-2348.
[22] JIANG S Y, YANG S X. An improved multiobjective optimization evolutionary algorithm based on decomposition for complex Pareto fronts[J]. IEEE transactions on cybernetics, 2016, 46(2):421-437.
[23] LIANG Z P, HOU W J, HUANG X, et al. Two new reference vector adaptation strategies for many-objective evolutionary algorithms[J]. Information sciences, 2019, 483:332-349.
[24] WANG R, PURSHOUSE R C, FLEMING P J. Preference-inspired co-evolutionary algorithms using weight vectors[J]. European journal of operational research, 2015, 243(2):423-441.
[25] GU F, LIU H L, TAN K C. A multiobjective evolutionary algorithm using dynamic weight design method[J]. International journal of innovative computing, information and control, 2012, 8(5B): 3677-3688.
[26] LIU Q Q, JIN Y C, HEIDERICH M, et al. Adaptation of reference vectors for evolutionary for evolutionary many-objective optimization of problems with irregular Pareto fronts[C]// 2019 IEEE Congress on Evolutionary Computation (CEC). New York: IEEE, 2019:1726-1733.
[27] LIU H L, CHEN L, ZHANG Q F, et al. Adaptively allocating search effort in challenging many-objective optimization problems[J]. IEEE transactions on evolutionary computation, 2018, 22(3):433-448.
[28] HE X Y, ZHOU Y R, CHEN Z F, et al. Evolutionary many-objective optimization based on dynamical decomposition[J]. IEEE transactions on evolutionary computation, 2019, 23(3): 361-375.
[29] LIU Y P, ISHIUCHI H, MASUYAMA N, et al. Adapting reference vectors and scalarizing functions by growing neural gas to handle irregular Pareto fronts[J]. IEEE transactions on evolutionary computation, 2020, 24(3):439-453.
[30] GE H, ZHAO M D, SUN L, et al. A many-objective evolutionary algorithm with two interacting processes: cascade clustering and reference point incremental learning[J]. IEEE transactions on evolutionary computation, 2019, 23(4):572-586.
[31] LI H, DENG J D, ZHANG Q F, et al. Adaptive epsilon dominance in decomposition-based multiobjective evolutionary algorithm[J]. Swarm and evolutionary computation, 2019, 45:52-67.
[32] LI M Q, YANG S X, LIU X H. Pareto or non-Pareto: bi-criterion evolution in multi-objective optimization[J]. IEEE transactions on evolutionary computation, 2016, 20(5):645-665.
[33] CAI X Y, YANG Z X, FAN Z, et al. Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimization[J]. IEEE transactions on cybernetics, 2017, 47(9):2824-2837.
[34] LIU C,ZHAO Q,YAN B, et al. Adaptive sorting-based evolutionary algorithm for many-objective optimization[J]. IEEE transactions on evolutionary computation, 2019, 23(2):247-257.
[35] DAS S S, ISLAM M M, ARAFAT N A. Evolutionary algorithm using adaptive fuzzy dominance and reference point for many-objective optimization[J]. Swarm and evolutionary computation, 2019, 44: 1092-1107.
[36] LIU Y P, GONG D W, SUN X Y, et al. Many-objective evolutionary optimization based on reference points[J]. Applied soft computing, 2017, 50:344-355.
[37] TIAN Y, CHENG R, ZHANG X Y, et al. An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility[J]. IEEE transactions on evolutionary computation, 2018, 22(4):609-622.
[38] CAI X Y, SUN H R, ZHU C Y, et al. Locating the boundaries of Pareto fronts: a many-objective evolutionary algorithm based on corner solution search[EB/OL]. (2018-06-08)[2020-09-15]. https://arxiv.org/abs/1806.02967.
[39] WANG Z K, ZHANG Q F, LI H, et al. On the use of two reference points in decomposition based multiobjective evolutionary algorithms[J]. Swarm and evolutionary computation, 2017, 34: 89-102.
[40] ZHOU Y R, XIANG Y, CHEN Z F, et al. A scalar projection and angle-based evolutionary algorithm for many-objective optimization problems[J]. IEEE transactions on cybernetics, 2019, 49(6): 2073-2084.
[41] XIANG Y, ZHOU Y R, YANG X W, et al. A many-objective evolutionary algorithm with Pareto-adaptive reference points[J]. IEEE transactions on evolutionary computation, 2020, 24(1):99-113.
[42] LIN Q Z, LIU S B, WONG K C, et al. A clustering-based evolutionary algorithm for many-objective optimization problems[J]. IEEE transactions on evolutionary computation, 2019, 23(3): 391-405.
[43] DENYSIUK R, COSTA L, ESPwidth=4,height=12,dpi=110RITO SANTO I. Clustering-based selection for evolutionary many-objective optimization[C]// International Conference on Parallel Problem Solving from Nature.Berlin: Springer, 2014:538-547.
[44] 封文清,巩敦卫. 基于在线感知Pareto前沿划分目标空间的多目标进化优化[J].自动化学报, 2020,46(8):1628-1643.
[45] PAN L Q, HE C, TIAN Y, et al. A region division based diversity maintaining approach for many-objective optimization[J]. Integrated computer-aided engineering, 2017, 24(3): 279-296.
[46] CAI X Y, MEI Z W, FAN Z, et al. A constrained decomposition approach with grids for evolutionary multiobjective optimization[J]. IEEE transactions on evolutionary computation, 2018, 22(4): 564-577.
[47] 汪慎文,杨锋,徐亮,等. 离散差分进化算法求解共享单车调度问题[J].郑州大学学报(工学版),2019,40(4):48-53.
[48] 梁静,刘睿,瞿博阳,等.进化算法在大规模优化问题中的应用综述[J].郑州大学学报(工学版),2018,39(3):15-21.
相似文献/References:
[1]肖俊明.周谦,瞿博阳,韦学辉.多目标进化算法及其在电力环境经济调度中的应用综述[J].郑州大学学报(工学版),2016,37(02):1.[doi:Multi-objective Evolutionary Algorithm and Its Ap]
Xiao Junming,Zhou Qian,Qu Boyang,et al.Multi-objective Evolutionary Algorithm and Its Application in Electric Power Environment Economic Dispatch[J].Journal of Zhengzhou University (Engineering Science),2016,37(01):1.[doi:Multi-objective Evolutionary Algorithm and Its Ap]
[2]王志,王朝雅,杨飞.弹性底板上的液压支架整体尺寸参数优化[J].郑州大学学报(工学版),2017,38(03):73.[doi:10.13705/j.issn.1671-6833.2016.06.002]
Wang Zhichao,Ya Yangfei.Overall Parameter Optimizes of the Hydraulic Support on the Elastic Foundation[J].Journal of Zhengzhou University (Engineering Science),2017,38(01):73.[doi:10.13705/j.issn.1671-6833.2016.06.002]
[3]李佳华,马连博,王兴伟,等.基于多目标蜂群进化优化的微电网能量调度方法[J].郑州大学学报(工学版),2018,39(06):50.[doi:10.13705/j.issn.1671-6833.2018.06.020]
Li Jiahua,Malembo,Wang Xingwei,et al.A Novel Multi-objective Artificial Bee Colony Algorithm for Microgrid Energy Dispatching Model[J].Journal of Zhengzhou University (Engineering Science),2018,39(01):50.[doi:10.13705/j.issn.1671-6833.2018.06.020]
[4]章健,熊壮壮,王明东,等.基于二阶锥规划的主动配电网动态无功优化[J].郑州大学学报(工学版),2019,40(01):32.[doi:10.13705/j.issn.1671-6833.2019.01.003]
Zhang Jian,Bear strong,Wang Mingdong,et al.Dynamic Reactive Power Optimization in Active Distribution Network Based on Second-Order Cone Programming[J].Journal of Zhengzhou University (Engineering Science),2019,40(01):32.[doi:10.13705/j.issn.1671-6833.2019.01.003]
[5]闫李,李超,柴旭朝,等.基于多学习多目标鸽群优化的动态环境经济调度[J].郑州大学学报(工学版),2019,40(04):2.[doi:10.13705/j.issn.1671-6833.2019.04.023]
Yan Li,Li Chao,Chai Xuchao,et al.Dynamic Economic Emission Dispatch Based On Multiple Learning Multi-objective Pigeon-inspired Optimization[J].Journal of Zhengzhou University (Engineering Science),2019,40(01):2.[doi:10.13705/j.issn.1671-6833.2019.04.023]
[6]刘可,巩敦卫.用于指尖定位的多目标分布估计算法[J].郑州大学学报(工学版),2019,40(04):12.[doi:10.13705/j.issn.1671-6833.2019.04.011]
Liu Ke,Gong Dunwei.A Multi-objective Estimation of Distribution Algorithm for the Fingertip Localization[J].Journal of Zhengzhou University (Engineering Science),2019,40(01):12.[doi:10.13705/j.issn.1671-6833.2019.04.011]
[7]朱晓东,王颖,杨之乐,等.启发式多目标优化算法在能源和电力系统中的典型应用综述[J].郑州大学学报(工学版),2019,40(05):1.[doi:10.13705/j.issn.1671-6833.2019.05.010]
Zhu Xiaodong,Wang Ying Young Joy Guo Yuanjun.A review of typical applications of heuristic multi-objective optimization algorithms in energy and power systems[J].Journal of Zhengzhou University (Engineering Science),2019,40(01):1.[doi:10.13705/j.issn.1671-6833.2019.05.010]
[8]张茂清,汪镭,崔志华,等.基于混合策略的快速非支配排序算法II[J].郑州大学学报(工学版),2020,41(04):23.[doi:10.13705/j.issn.1671-6833.2020.04.007]
ZHANG Maoqing,WANG Lei,CUI Zhihua,et al.Fast Non-dominated Sorting Genetic Algorithm II Based on Hybrid Strategies[J].Journal of Zhengzhou University (Engineering Science),2020,41(01):23.[doi:10.13705/j.issn.1671-6833.2020.04.007]
[9]刘家学,李文华,朱铁稳.飞机元器件可靠性的优化模型[J].郑州大学学报(工学版),1998,19(02):115.
[J].Journal of Zhengzhou University (Engineering Science),1998,19(01):115.