[1]张志刚,周翔,房占鹏,等.基于绝对节点坐标方法的柔顺机构动力学建模与仿真[J].郑州大学学报(工学版),2020,41(02):50-55.[doi:10.13705/j.issn.1671-6833.2020.03.013]
 ZHANG Zhigang,ZHOU Xiang,FANG Zhanpeng,et al.Dynamics Modeling and Simulation of Compliant Mechanisms Using Absolute Nodal Coordinate Formulation[J].Journal of Zhengzhou University (Engineering Science),2020,41(02):50-55.[doi:10.13705/j.issn.1671-6833.2020.03.013]
点击复制

基于绝对节点坐标方法的柔顺机构动力学建模与仿真()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
41
期数:
2020年02期
页码:
50-55
栏目:
出版日期:
2020-05-31

文章信息/Info

Title:
Dynamics Modeling and Simulation of Compliant Mechanisms Using Absolute Nodal Coordinate Formulation
作者:
张志刚周翔房占鹏肖艳秋
郑州轻工业大学河南省机械装备智能制造重点实验室
Author(s):
ZHANG Zhigang ZHOU Xiang FANG Zhanpeng XIAO Yanqiu
Henan Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China
关键词:
柔顺机构绝对节点坐标方法大变形刚柔耦合动力学仿真
Keywords:
compliant mechanism absolute nodal coordinate formulation large deformation rigid-flexible coupling dynamic simulation
DOI:
10.13705/j.issn.1671-6833.2020.03.013
文献标志码:
A
摘要:
采用绝对节点坐标方法系统地研究了大变形柔顺杆的建模问题,建立了柔顺机构刚柔耦合动 力学方程。 在充分考虑柔顺杆与外部连接处变形特征基础上,提出了含端部变形约束的绝对节点坐标 梁单元。 应用闭锁问题缓解方法,考察了绝对节点坐标梁单元闭锁现象对柔顺机构动力学仿真的影响。 最后通过数值算例检验了绝对节点坐标方法对于柔顺机构动力学问题的精确性和有效性。
Abstract:
The modeling method for the compliant rod with large deformation was studied by using absolute nodal coordinate method, and the rigid-flexible coupling dynamic equations of the compliant mechanism were established.Considering the deformation characteristics of the compliant rod at the external connection, the new ANCF beam element with end deformation constraints was proposed.Based on the locking alleviation technique, the effect of the locking phenomenon of the absolute nodal coordinate beam element on the dynamic simulation of compliant mechanism was investigated.Finally, numerical examples were given to verify the accuracy and effectiveness of the absolute nodal coordinate method for the dynamic problems of compliant mechanisms.

参考文献/References:

[1] HOWELL L L. Compliant mechanisms[M]. New York: John Wiley and Sons, 2001.

[2] 高峰. 机构学研究现状与发展趋势的思考[J]. 机械工程学报, 2005, 41(8): 3-17.
[3] HOWELL L L, MIDHA A, NORTON T W. Evaluation of equivalent spring stiffness for use in a pseudo-rigid-body model of large-deflection compliant mechanisms[J]. Journal of mechanical design, 1996, 118(1): 126-131.
[4] 于靖军, 毕树生, 宗光华, 等. 基于伪刚体模型法的全柔性机构位置分析[J]. 机械工程学报, 2002, 38(2): 75-78.
[5] 李海燕, 张宪民, 彭惠青. 大变形柔顺机构的驱动特性研究[J]. 机械科学与技术, 2004, 23(9): 1040-1043.
[6] SU H J. A pseudorigid-body 3R model for determining large deflection of cantilever beams subject to tip loads[J]. Journal of mechanisms and robotics, 2009, 1(2): 021008.
[7] 冯忠磊, 余跃庆, 王雯静. 柔顺机构中大变形柔性梁的2自由度伪刚体模型[J]. 机械设计与研究, 2010, 26(3): 41-43.
[8] 余跃庆, 周鹏. 柔顺机构PR伪刚体模型[J]. 北京工业大学学报, 2013, 39(5): 641-647.
[9] 李茜, 余跃庆, 常星. 基于2R伪刚体模型的柔顺机构动力学建模及特性分析[J]. 机械工程学报, 2012, 48(13): 40-48.
[10] 余跃庆, 徐齐平. 柔顺机构PR伪刚体动力学建模与特性分析[J]. 农业机械学报, 2013, 44(3): 225-229.
[11] 余跃庆, 张娜. 含拐点的柔顺机构动力学建模及分析[J]. 北京工业大学学报, 2018, 44(4): 489-496.
[12] SHABANA A A. An absolute nodal coordinate formulation for the large rotation and deformation analysis of flexible bodies. Technical report MBS96-1-UIC[R]. Department of mechanical engineering, University of Illinois at Chicago, 1996.
[13] PATEL M, ORZECHOWSKI G, TIAN Q, et al. A new multibody system approach for tire modeling using ANCF finite elements[J]. Proceedings of the institution of mechanical engineers, part K: journal of multi-body dynamics, 2016, 230(1): 69-84.
[14] Kwidth=8,height=9,dpi=110ODOWSKI A, RANTALAINEN T, MIKKOLA A, et al. Flexible multibody approach in forward dynamic simulation of locomotive strains in human skeleton with flexible lower body bones[J]. Multibody system dynamics, 2011, 25(4): 395-409.
[15] 刘昊, 魏承, 田健, 等. 空间充气展开绳网捕获系统动力学建模与分析[J]. 机械工程学报, 2018, 54(22): 145-152.
[16] 李鹏飞, 曹博宇, 汪振宇, 等. 含非线性大变形构件的柔顺机构建模与分析[J]. 振动与冲击, 2019, 38(11): 110-115.
[17] 李鹏飞, 曹博宇, 汪振宇, 等. 一种外LET柔顺半铰的动力学建模与分析[J]. 中国机械工程, 2019, 30(14): 1727-1733.
[18] 刘治华, 刘博见, 许伟超, 等. 飞碟游乐设备驱动轴疲劳失效分析[J]. 郑州大学学报(工学版), 2017, 38(5): 91-96.
[19] PATEL M, SHABANA A A. Locking alleviation in the large displacement analysis of beam elements: the strain split method[J]. Acta mechanica, 2018, 229(7): 2923-2946.
[20] OMAR M A, SHABANA A A. A two-dimensional shear deformable beam for large rotation and deformation problems[J]. Journal of sound and vibration, 2001, 243(3): 565-576.

更新日期/Last Update: 2020-05-30