[1]王军雷,张程雲,陈卫哲,等.不同切角方柱斜切体驰振压电能量收集研究[J].郑州大学学报(工学版),2021,42(01):99-104.[doi:10.13705/j.issn.1671-6833.2021.01.013]
 WANG Junlei,ZHANG Chengyun,CHEN Weizhe,et al.Study on Piezoelectric Energy Harvesting of Square Column Oblique Body at Different Angles[J].Journal of Zhengzhou University (Engineering Science),2021,42(01):99-104.[doi:10.13705/j.issn.1671-6833.2021.01.013]
点击复制

不同切角方柱斜切体驰振压电能量收集研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
42
期数:
2021年01期
页码:
99-104
栏目:
出版日期:
2021-03-14

文章信息/Info

Title:
Study on Piezoelectric Energy Harvesting of Square Column Oblique Body at Different Angles
作者:
王军雷张程雲陈卫哲吴义鹏王定标靳遵龙
郑州大学机械与动力工程学院;许昌市质量技术监督检验测试中心;南京航空航天大学机械结构力学及控制国家重点实验室;

Author(s):
WANG Junlei1 ZHANG Chengyun1 CHEN Weizhe12 WU Yipeng3 WANG Dingbiao1 JIN Zunlong1
1.School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China; 2.Xuchang Quality and Technical Supervision, Inspection and Testing Center, Xuchang 461000, China; 3.State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
关键词:
Keywords:
square column oblique body piezoelectric energy harvest galloping bare square column vibration reduction
DOI:
10.13705/j.issn.1671-6833.2021.01.013
文献标志码:
A
摘要:
本文通过风洞试验,研究了不同斜切角度方柱斜切体(θ = 30°、45°、60°)和光滑方柱驰振式压电俘能器的俘能特性,分析了输出功率和电压在不同风速下的变化规律.结果表明:在最优负载R = 0.6 MΩ下,光滑方柱和方柱斜切体(θ = 30°、45°、60°)驰振压电俘能器的输出电压和功率均随风速的增大而增大,且增长率均呈现先增大后减小的趋势;采用光滑方柱钝体的输出电压和功率均大于方柱斜切体,在风速为U = 3.194 m/s时,光滑方柱驰振压电俘能器收集到的输出功率为0.0063 mW,分别是斜切角θ为30°、45°和60°的方柱斜切体的1.28倍、1.39倍和1.55倍;在相同风速下,斜切角度θ为30°的方柱斜切体输出电压和功率最大,θ为45°时次之,θ为60°时最小.本文的研究可以为相关压电俘能器的设计和工程中减振的设计提供借鉴.
Abstract:
In this paper, through wind tunnel test, the energy harvesting characteristics of the square column oblique body (θ =30°,45°,60°) and the bare square column with galloping piezoelectric energy harvester were studied. The variation rule of their output power and voltage under different wind speed were analyzed. The results showed that under the optimal load R=0.6 MΩ, the output voltage and power of the bare square column and the square column oblique body (θ =30°, 45°, 60°) piezoelectric energy harvester increasd with the increase of wind speed, while the growth rate showed a trend of increasing first and then decreasing. The output voltage and power of the bare square column were greater than that of the square column oblique body. When the wind speed was U=3.194 m/s, the output power collected by the bare square column galloping piezoelectric energy harvester was 0.006 3 mW, which was 1.28 times, 1.39 times and 1.55 times of the square column oblique body with the oblique angle θ of 30°, 45° and 60°, respectively. Under the same wind speed, the output voltage and power of the square column oblique body with the oblique angle θ of 30° were the highest, followed by 45°, and the lowest was 60°. The study of this paper could provide reference for the design of relevant piezoelectric energy harvester and the design of vibration reduction in engineering.

参考文献/References:

[1] ZHANG M, WANG J L. Experimental study on piezoelectric energy harvesting from vortex-induced vibrations and wake-induced vibrations[J]. Journal of sensors, 2016,2016:2673292.

[2] 张璐路,李斌,权超,等. 基于磁滞特性的自取电电源取能线圈匝数研究[J]. 电力工程技术, 2019, 38(1): 119-125.
[3] 刘元尊,管维亚,赵静波,等. 基于参数辨识的波浪发电场等效建模研究[J]. 电力工程技术, 2019, 38(2): 69-74.
[4] 白桦,郭聪敏,刘健新.紊流强度与积分尺度对结构平均风压与脉动风压雷诺数效应影响研究[J].郑州大学学报(工学版),2018,39(2):73-79.
[5] REN X H, FAN H Q, WANG C, et al. Wind energy harvester based on coaxial rotatory freestanding triboelectric nanogenerators for self-powered water splitting[J]. Nano energy, 2018, 50: 562-570.
[6] REN X H, FAN H Q, ZHAO Y W, et al. Flexible lead-free BiFeO3/PDMS-based nanogenerator as piezoelectric energy harvester[J]. ACS applied materials & interfaces, 2016, 8(39): 26190-26197.
[7] ZHAO Y W, FAN H Q, REN X H, et al. Lead-free Bi5-xLaxTi3FeO15 (x=0,1) nanofibers toward wool keratin-based biocompatible piezoelectric nanogen-erators[J]. Journal of materials chemistry C, 2016, 4(30): 7324-7331.
[8] 文凌锋,党广宇,田伟,等. 基于多时间尺度风储协同的微电网能量管理策略研究[J]. 电力工程技术, 2018, 37(3): 123-128.
[9] ROSTAMI A B, ARMANDEI M. Renewable energy harvesting by vortex-induced motions: review and benchmarking of technologies[J]. Renewable and sustainable energy reviews, 2017, 70:193-214.
[10] 张军.正三棱柱流致振动和能量转化试验研究[D].天津:天津大学,2017.
[11] 赵兴强,王军雷,蔡骏,等. 基于风致振动效应的微型风能收集器研究现状[J]. 振动与冲击,2017,36(16):106-112.
[12] 王军雷,冉景煜,张智恩,等. 外界载荷对圆柱涡激振动能量转换的影响[J]. 浙江大学学报(工学版), 2015, 49(6): 1093-1100.
[13] 王军雷. 基于流机电多物理场耦合下涡激振动能量收集模型及特性[D]. 重庆:重庆大学,2014.
[14] ZHANG M, ZHAO G F, WANG J L. Study on fluid-induced vibration power harvesting of square columns under different attack angles[J]. Geofluids, 2017, 2017:1-18.
[15] 王小丽,方玉明,丁立群,等. 不同频带宽度的振动能量收集器研究进展[J]. 传感器与微系统, 2016, 35(7):5-8.
[16] 尹诗,侯国莲,于晓东,等.基于Bi-RNN的风电机组主轴承温度预警方法研究[J].郑州大学学报(工学版),2019,40(5):45-51.
[17] WANG J L, GENG L F, ZHANG M, et al. Broadening band of wind speed for aeroelastic energy scavenging of a cylinder through buffeting in the wakes of a squared prism[J]. Shock and vibration, 2018,5:1-14.
[18] 练继建,燕翔,刘昉,等. 正方形截面振子在不同来流方向的单自由度流致振动特性研究[J]. 振动与冲击, 2017, 36(15): 29-35.
[19] WANG J L, ZHOU S X, ZHANG Z E, et al. High-performance piezoelectric wind energy harvester with Y-shaped attachments[J]. Energy conversion and management, 2019, 181: 645-652.
[20] HU G, WANG J L, SU Z, et al. Performance evaluation of twin piezoelectric wind energy harvesters under mutual interference[J]. Applied physics letters,2019,115(7): 073901.
[21] WANG J L, TANG L H, ZHAO L Y, et al. Efficiency inve-stigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies[J]. Energy, 2019,172: 1066-1078.
[22] 丁林,杨林,张力,等. 钝体-压电片风致振动能量收集优化实验研究[J]. 吉林大学学报(工学版),2020,50(3):886-893.
[23] 李恒. 不同截面形状柱体流致振动及能量转换特性[D].重庆:重庆大学,2015.
[24] 梁盛平,王嘉松. 仿鱼尾结构抑制圆柱涡激振动风洞实验研究[C]//第十八届中国海洋(岸)工程学术讨论会. 舟山:中国海洋学会海洋工程分会,2017: 3.
[25] HU G, TSE K T, WEI M H, et al. Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments[J]. Applied energy, 2018, 226: 682-689.

更新日期/Last Update: 2021-03-15