[1] WICKRAMARATNE N P, JARONIEC M. Activated carbon spheres for CO2 adsorption[J]. ACS applied materials & interfaces, 2013, 5(5): 1849-1855.[2] TIAN Z H, HUANG J J, ZHANG Z L, et al. Organic-inorganic hybrid microporous polymers based on Octaphenylcyclotetrasiloxane: synthesis, carbonization and adsorption for CO2[J]. Microporous and mesoporous materials, 2016, 234: 130-136.
[3] LIU J, WICKRAMARATNE N P, QIAO S Z, et al. Molecular-based design and emerging applications of nanoporous carbon spheres[J]. Nature materials, 2015, 14(8): 763.
[4] BING X F, WEI Y J, WANG M, et al. Template-free synthesis of nitrogen-doped hierarchical porous carbons for CO2 adsorption and supercapacitor electrodes[J]. Journal of colloid and interface science, 2017, 488: 207-217.
[5] LAKHI K S, PARK D H, AL-BAHILY K, et al. Mesoporous carbon nitrides: synthesis, functionalization, and applications[J]. Chemical society reviews, 2017, 46(1): 72-101.
[6] MA G F, YANG Q, SUN K J, et al. Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor[J]. Bioresource techno-logy, 2015, 197: 137-142.
[7] WU D C, DONG H C, PIETRASIK J, et al. Novel nanoporous carbons from well-defined poly (styrene-co-acrylonitrile)-grafted silica nanoparticles[J]. Chemistry of materials, 2011, 23(8): 2024-2026.
[8] TAN L X, TAN B E. Hypercrosslinked porous polymer materials: design, synthesis, and applications[J]. Chemical society reviews, 2017, 46(11): 3322-3356.
[9] UPPUGALLA S, MALE U, SRINIVASAN P. Design and synthesis of heteroatoms doped carbon/polyaniline hybrid material for high performance electrode in supercapacitor application[J]. Electrochimica acta, 2014, 146: 242-248.
[10] LI W Z, LI B Y, SHEN M, et al. Use of Gemini surfactant as emulsion interface microreactor for the synthesis of nitrogen-doped hollow carbon spheres for high-performance supercapacitors[J]. Chemical engineering journal, 2020, 384:123309.
[11] BAIRI V G, NASINI U B, RAMASAHAYAM S K, et al. Electrocatalytic and supercapacitor performance of phosphorous and nitrogen co-doped porous carbons synthesized from aminated tannins[J]. Electrochimica acta, 2015, 182: 987-994.
[12] JIA Q, YANG C, PAN Q Q, et al. High-voltage aqueous asymmetric pseudocapacitors based on methyl blue-doped polyaniline hydrogels and the derived N/S-codoped carbon aerogels[J]. Chemical engineering journal, 2020, 383: 123153.
[13] TROSCHKE E, GRwidth=11,height=11,dpi=110TZ S, LÜBKEN T, et al. Mechanochemical Friedel-Crafts alkylation—A sustainable pathway towards porous organic polymers[J]. Angewandte chemie, 2017, 129(24): 6963-6967.
[14] TIAN Z H, HEIL T, SCHMIDT J, et al. Synthesis of a porous C3N-derived framework with high yield by gallic acid cross-linking using salt melts[J]. ACS applied materials & interfaces, 2020, 12(11): 13127-13133.
[15] SRINIVAS G, BURRESS J, YILDIRIM T. Graphene oxide derived carbons (GODCs): synthesis and gas adsorption properties[J]. Energy & environmental science, 2012, 5(4): 6453-6459.
[16] LI Z H, WU D C, LIANG Y R, et al. Facile fabrication of novel highly microporous carbons with superior size-selective adsorption and supercapacitance properties[J]. Nanoscale, 2013, 5(22): 10824-10828.