[1]炊宁博,黄佳佳,原思国,等.新型N,S共掺杂微孔碳材料的制备及性能研究[J].郑州大学学报(工学版),2020,41(05):21-25.[doi:10.13705/j.issn.1671-6833.2020.05.002]
 CHUI Ningbo,HUANG Jiajia,YUAN Siguo,et al.Preparation and Properties of Novel N, S-Codoped Microporous Carbon[J].Journal of Zhengzhou University (Engineering Science),2020,41(05):21-25.[doi:10.13705/j.issn.1671-6833.2020.05.002]
点击复制

新型N,S共掺杂微孔碳材料的制备及性能研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
41
期数:
2020年05期
页码:
21-25
栏目:
出版日期:
2020-10-01

文章信息/Info

Title:
Preparation and Properties of Novel N, S-Codoped Microporous Carbon
作者:
炊宁博黄佳佳原思国田志红
郑州大学化工学院,河南郑州450001

Author(s):
CHUI Ningbo HUANG Jiajia YUAN Siguo TIAN Zhihong
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
关键词:
Keywords:
porous materials microporous carbon co doping CO2 adsorption supercapacitors
DOI:
10.13705/j.issn.1671-6833.2020.05.002
文献标志码:
A
摘要:
以三聚氯氰和噻吩为反应单体,通过简单的傅克烷基化反应制备含N S多孔有机聚合物(PCT),进而以PCT为碳前驱体,采用氢氧化钾活化法在不同温度下碳化得到N.S共掺杂微孔碳材料(CPCT-X),研究碳化温度对材料比表面积和孔径的影响规律,并考察具有不同孔结构和杂原子含量微孔碳材料的CO 2 捕集性能和电化学性能。结果表明:CPCT-X具有较大的比表面积(1629 m 2 · g -1 )和高微孔孔隙率(96.7%),碳化温度为600 ,具有最好的CO 2 捕集性能(5.5 mmol/g,273K,0.1MPa);同时,CPCT-X具有很好的超电性能,当碳化温度为700 ,比电容可达210F/g(电流密度为0.5A/g)。
Abstract:
N, S-Co doped microporous carbons (CPCT-X) were prepared by potassium hydroxide activation method at different carbonization temperatures using porous organic polymer (PCT) synthesized by a simple Friedel-Crafts alkylation reaction between melamine and thiophene as carbon precursors. The effect of carbonization temperature on the BET and pore sizes was investigated, and the CO2 capture and electrochemistry properties of CPCT-X with different pore structures and N, S contents were also conducted. The results suggested that CPCT-X had a large specific surface area (1 629 m2·g-1) and high micropore porosity (96.7%), and showed a good CO2 capture performance at the carbonization temperature of 600 ℃ (5.5 mmol/g, 273 K, 0.1 MPa). Meanwhile, the specific capacity could reach 210 F/g at a current density of 0.5 A/g when the carbonization temperature was 700 ℃.

参考文献/References:

[1] WICKRAMARATNE N P, JARONIEC M. Activated carbon spheres for CO2 adsorption[J]. ACS applied materials & interfaces, 2013, 5(5): 1849-1855.

[2] TIAN Z H, HUANG J J, ZHANG Z L, et al. Organic-inorganic hybrid microporous polymers based on Octaphenylcyclotetrasiloxane: synthesis, carbonization and adsorption for CO2[J]. Microporous and mesoporous materials, 2016, 234: 130-136.
[3] LIU J, WICKRAMARATNE N P, QIAO S Z, et al. Molecular-based design and emerging applications of nanoporous carbon spheres[J]. Nature materials, 2015, 14(8): 763.
[4] BING X F, WEI Y J, WANG M, et al. Template-free synthesis of nitrogen-doped hierarchical porous carbons for CO2 adsorption and supercapacitor electrodes[J]. Journal of colloid and interface science, 2017, 488: 207-217.
[5] LAKHI K S, PARK D H, AL-BAHILY K, et al. Mesoporous carbon nitrides: synthesis, functionalization, and applications[J]. Chemical society reviews, 2017, 46(1): 72-101.
[6] MA G F, YANG Q, SUN K J, et al. Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor[J]. Bioresource techno-logy, 2015, 197: 137-142.
[7] WU D C, DONG H C, PIETRASIK J, et al. Novel nanoporous carbons from well-defined poly (styrene-co-acrylonitrile)-grafted silica nanoparticles[J]. Chemistry of materials, 2011, 23(8): 2024-2026.
[8] TAN L X, TAN B E. Hypercrosslinked porous polymer materials: design, synthesis, and applications[J]. Chemical society reviews, 2017, 46(11): 3322-3356.
[9] UPPUGALLA S, MALE U, SRINIVASAN P. Design and synthesis of heteroatoms doped carbon/polyaniline hybrid material for high performance electrode in supercapacitor application[J]. Electrochimica acta, 2014, 146: 242-248.
[10] LI W Z, LI B Y, SHEN M, et al. Use of Gemini surfactant as emulsion interface microreactor for the synthesis of nitrogen-doped hollow carbon spheres for high-performance supercapacitors[J]. Chemical engineering journal, 2020, 384:123309.
[11] BAIRI V G, NASINI U B, RAMASAHAYAM S K, et al. Electrocatalytic and supercapacitor performance of phosphorous and nitrogen co-doped porous carbons synthesized from aminated tannins[J]. Electrochimica acta, 2015, 182: 987-994.
[12] JIA Q, YANG C, PAN Q Q, et al. High-voltage aqueous asymmetric pseudocapacitors based on methyl blue-doped polyaniline hydrogels and the derived N/S-codoped carbon aerogels[J]. Chemical engineering journal, 2020, 383: 123153.
[13] TROSCHKE E, GRwidth=11,height=11,dpi=110TZ S, LÜBKEN T, et al. Mechanochemical Friedel-Crafts alkylation—A sustainable pathway towards porous organic polymers[J]. Angewandte chemie, 2017, 129(24): 6963-6967.
[14] TIAN Z H, HEIL T, SCHMIDT J, et al. Synthesis of a porous C3N-derived framework with high yield by gallic acid cross-linking using salt melts[J]. ACS applied materials & interfaces, 2020, 12(11): 13127-13133.
[15] SRINIVAS G, BURRESS J, YILDIRIM T. Graphene oxide derived carbons (GODCs): synthesis and gas adsorption properties[J]. Energy & environmental science, 2012, 5(4): 6453-6459.
[16] LI Z H, WU D C, LIANG Y R, et al. Facile fabrication of novel highly microporous carbons with superior size-selective adsorption and supercapacitance properties[J]. Nanoscale, 2013, 5(22): 10824-10828.

更新日期/Last Update: 2020-10-23