[1]马歌,贾遂民.认知车联网频谱分配的免疫优化实现[J].郑州大学学报(工学版),2021,42(05):62-67.[doi:10.13705/j.issn.1671-6833.2021.05.014]
 MA Ge,JIA Suimin.Immune Optimization Based on Spectrum Allocation of Cognitive Vehicular Network[J].Journal of Zhengzhou University (Engineering Science),2021,42(05):62-67.[doi:10.13705/j.issn.1671-6833.2021.05.014]
点击复制

认知车联网频谱分配的免疫优化实现()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
42
期数:
2021年05期
页码:
62-67
栏目:
出版日期:
2021-09-10

文章信息/Info

Title:
Immune Optimization Based on Spectrum Allocation of Cognitive Vehicular Network
作者:
马歌贾遂民
郑州师范学院信息科学与技术学院;
Author(s):
MA Ge JIA Suimin
College of Information Science & Technology, Zhengzhou Normal University, Zhengzhou 450044, China
关键词:
Keywords:
cognitive vehicle network spectrum allocation immune optimization throughput capacity
DOI:
10.13705/j.issn.1671-6833.2021.05.014
文献标志码:
A
摘要:
在车联网中引入认知无线电技术产生了认知车联网。如何对认知车联网中的频谱进行有效分配是其关键技术之一。针对此问题,基于图着色模型,将其建模为最大化认知节点吞吐量的优化问题,进而提出一种基于免疫优化的求解算法。设计了适合频谱分配问题的矩阵编码方式、抗体修正方式、比例克隆等策略,保证算法的寻优能力。仿真实验表明,本文所提算法能获得较高的认知节点吞吐量,适合于认知车联网的频谱分配。
Abstract:
In order to meet the increasing spectrum demands of cognitive vehicular network, spectrum allocation problem is studied. Cognitive vehicle network is the formulation of cognitive radio technology into vehicle network. For the problem of cognitive vehicle network spectrum allocation,which is modeled to optimize the throughput of cognitive nodes, an immune optimization algorithm based on graph theory model is proposed. To ensure the optimization of algorithm, it concludes matrix-coding scheme, antibody correction mode, and proportion of cloning. The simulation results show that the proposed algorithm can obtain high cognitive node throughput and is suitable for the spectrum allocation of cognitive vehicle network.

参考文献/References:

[1] GOLI-BIDGOLI S, MOVAHHEDINIA N. A trust-based framework for increasing MAC layer reliability in cognitive radio VANETs[J]. Wireless personal communications, 2017,95(3):2873-2893.

[2] HE X X, ZHANG H, LUO T. Transmission capacity analysis for cellular based cognitive radio VANETs[J]. Wireless networks, 2017,23(7): 2215-2226.
[3] JOY E C, ZHANG S, LIU E, et al. Cognitive radio aided vehicular ad-hoc networks with efficient spectrum allocation and QoS guarantee[C]//22nd International Conference on Automation and Computing (ICAC). Piscataway: IEEE, 2016:156-161.
[4] FAWAZ K, GHANDOUR A, OLLEIK M, et al. Improving reliability of safety applications in vehicle ad hoc networks through the implementation of a cognitive network[C]//2010 17th International Conference on Telecommunications. Piscataway:IEEE, 2010:798-805.
[5] HE X X, SHI W S, LUO T. Survey of cognitive radio VANET[J]. KSII transactions on internet and information systems, 2014, 8(11):3837-3859.
[6] SINGH K D, RAWAT P, BONNIN J M. Cognitive radio for vehicular ad hoc networks (CR-VANETs): approaches and challenges[J]. Eurasip journal on wireless communications and networking, 2014, 2014:49.
[7] 柴争义, 王秉, 李亚伦. 拟态物理学优化的认知无线电网络频谱分配[J]. 物理学报, 2014, 63(22):437-442.
[8] CHEMBE C, NOOR R M, AHMEDY I, et al. Spectrum sensing in cognitive vehicular network: state-of-art, challenges and open issues[J]. Computer communications, 2017,97:15-30.
[9] HAN Y, EKICI E, KREMO H, et al. Resource allocation algorithms supporting coexistence of cognitive vehicular and IEEE 802.22 networks[J]. IEEE tran-sactions on wireless communications, 2017, 16(2):1066-1079.
[10] WANG T, SONG L Y, HAN Z. Coalitional graph games for popular content distribution in cognitive radio VANETs[J]. IEEE transactions on vehicular technology, 2013, 62(8):4010-4019.
[11] CHENG N, ZHANG N, LU N, et al. Opportunistic spectrum access for CR-VANETs: a game-theoretic approach[J].IEEE transactionson vehicular technology,2014,63(1):237-251.
[12] ZHANG L, LUO T, LIU W, et al. Cooperative spectrum allocation with QoS support in cognitive cooperative vehicular ad hoc networks[J]. China communication,2014,11(10):49-59.
[13] JIANG T, WANG Z Q, ZHANG L, et al. Efficient spectrum utilization on TV band for cognitive radio based high speed vehicle network[J]. IEEE transactions on wireless communications,2014,13(10):5319-5329.
[14] SOHAN T A, HAQUE H H, HASAN A, et al. A graph coloring based dynamic channel assignment algorithm for cognitive radio vehicular ad hoc networks[C]// 2016 International Conference on Networking Systems and Security (NSYSS). Piscataway: IEEE, 2016:110-117.
[15] 王艳丽,梁静,薛冰,等.基于进化计算的特征选择方法研究概述[J].郑州大学学报(工学版),2020,41(1):49-57.
[16] XIAO J K,LI W M,LIU B, et al. A novel multi-population coevolution strategy for single objective immune optimization algorithm[J]. Neural computing and applications, 2018,29(4):1115-1128.
[17] QI Y T, BAO L, MA X L, et al. Self-adaptive multi-objective evolutionary algorithm based on decomposition for large-scale problems: a case study on reservoir flood control operation[J]. Information sciences, 2016,367-368: 529-549.

更新日期/Last Update: 2021-10-11