[1] VANKAYALA R, HWANG K C. Near-infrared-light-activatable nanomaterial-mediated phototheranostic nanomedicines: an emerging paradigm for cancer treatment[J]. Advanced materials, 2018, 30(23): 1706320.[2] SANG W, ZHANG Z, DAI Y L, et al. Recent advances in nanomaterial-based synergistic combin-ation cancer immunotherapy[J]. Chemical society reviews, 2019, 48(14): 3771-3810.
[3] DE S, PATRA K, GHOSH D, et al. Tailoring the efficacy of multifunctional biopolymeric-graphene oxide quantum dot based nanomaterial as nanocargo in cancer therapeutic application[J]. ACS biomaterials science and engineering, 2018, 4(2): 514-531.
[4] LI H T, KANG Z H, LIU Y, et al. Carbon nanodots: synthesis, properties and applications[J]. Journal of materials chemistry, 2012, 22(46): 24230-24253.
[5] ZHU Y, LI J, LI W X, et al. The biocompatibility of nanodiamonds and their application in drug delivery systems[J]. Theranostics, 2012, 2(3): 302-312.
[6] TOLKACHOV M, SOKOLOVA V, LOZA K, et al. Study of biocompatibility effect of nanocarbon particles on various cell types in vitro[J]. Materialwissenschaft und werkstofftechnik, 2016, 47(2/3): 216-221.
[7] CHAN W C W, MAXWELL D J, GAO X H, et al. Luminescent quantum dots for multiplexed biological detection and imaging[J]. Current opinion biotechno-logy, 2002, 13(1): 40-46.
[8] CHONG S X, JIN Y X, AU-YEUNG S C F, et al. New Pt-NNSO core anticancer agents: structural optimization and investigation of their anticancer activity[J]. Journal of inorganic biochemistry, 2017, 170: 34-45.
[9] WANG X P, GUO Q L, TAO L, et al. E platinum, a newly synthesized platinum compound, induces apoptosis through ROS-triggered ER stress in gastric carcinoma cells[J]. Molecular carcinogenesis, 2017, 56(1): 218-231.
[10] SINGH R, NALWA H S. Medical applications of nanoparticles in biological imaging, cell labeling, antimicrobial agents, and anticancer nanodrugs[J]. Journal of biomedical nanotechnology, 2011, 7(4): 489-503.
[11] ABU-SURRAH A S, KETTUNEN M. Platinum group antitumor chemistry: design and development of new anticancer drugs complementary to cisplatin[J]. Current medicinal chemistry, 2006, 13(11): 1337-1357.
[12] KUMARI A, KUMAR A, SAHU S K, et al. Synthesis of green fluorescent carbon quantum dots using waste polyolefins residue for Cu2+ ion sensing and live cell imaging[J]. Sensors and actuators B: chemical, 2018, 254: 197-205.
[13] SINGH V K, SINGH V, YADAV P K, et al. Nitrogen doped fluorescent carbon quantum dots for on-off-on detection of Hg2+ and glutathione in aqueous medium: live cell imaging and IMPLICATION logic gate operation[J]. Journal of photochemistry and photobiology A: chemistry, 2019, 384: 112042.
[14] ZHOU L F, QIAO M, ZHANG L, et al. Green and efficient synthesis of carbon quantum dots and their luminescent properties[J]. Journal of luminescence, 2019, 206: 158-163.[15] LI J Z, LIU K, XUE J L, et al. CQDs preluded carbon-incorporated 3D burger-like hybrid ZnO enhanced visible-light-driven photocatalytic activity and mechanism implication[J]. Journal of catalysis, 2019, 369: 450-461.
[16] SU A Q, CHEN M K, FU Z H, et al. Hybridizing engineering strategy of non-lacunary (nBu4N)4W10O32 by carbon quantum dot with remarkably enhanced visible-light-catalytic oxidation performance[J]. Applied catalysis A: general, 2019, 587: 117261.
[17] CUI B, FENG X T, ZHANG F, et al. The use of carbon quantum dots as fluorescent materials in white LEDs[J]. New carbon materials, 2017, 32(5): 385-401.
[18] WANG H, DI J, SUN Y B, et al. Biocompatible PEG-Chitosan@Carbon dots hybrid nanogels for two-photon fluorescence imaging, near-infrared light/pH dual-responsive drug carrier, and synergistic therapy[J]. Advanced functional materials, 2015, 25(34): 5537-5547.
[19] ZHANG Y, SHU C Y, ZHEN M M, et al. A novel bone marrow targeted gadofullerene agent protect against oxidative injury in chemotherapy[J]. Science China materials, 2017, 60(9): 866-880.
[20] ZHOU Y, ZHEN M M, GUAN M R, et al. Amino acid modified [70] fullerene derivatives with high radical scavenging activity as promising bodyguards for chemotherapy protection[J]. Scientific reports , 2018, 8: 16573.
[21] BAKER S N, BAKER G A. Luminescent carbon nanodots: emergent nanolights[J]. Angewandte chemie international edition, 2010, 49(38): 6726-6744.
[22] SUN Y P, ZHOU B, LIN Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American chemical society, 2006, 128(24): 7756-7757.
[23] BOURLINOS A B, STASSINOPOULOS A, ANGLOS D, et al. Photoluminescent carbogenic dots[J]. Chemistry of materials, 2008, 20(14): 4539-4541.
[24] ZHAO Q L, ZHANG Z L, HUANG B H, et al. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite[J]. Chemical communications, 2008,44(41): 5116-5118.
[25] LIU H P, YE T, MAO C D. Fluorescent carbon nanoparticles derived from candle soot[J]. Angewandte chemie international edition, 2007, 46(34): 6473-6475.
[26] 周军民,廖端芳,杨小平,等. Manunycin对人肝癌HepG2细胞的生长抑制作用与Ras通路的关系[J]. 癌症, 2002, 21(4): 364-368.
[27] 陈建国,宋新明. 中国肝癌发病水平的估算及分析[J]. 中国肿瘤, 2005, 14(1): 28-31.
[28] 张茜,芮瑞,李佩佩,等. 草乌多糖金属配合物的制备、表征与抗癌活性研究[J]. 郑州大学学报(工学版), 2016,37 (3): 36-39.
[29] ASHARANI P V, MUN G L K, HANDE M P, et al. Cytotoxicity and genotoxicity of silver nanoparticles in human cells[J]. ACS nano, 2009, 3(2): 279-290.