[1] 陈禹.智能汽车局部路径规划方法现状与发展分析[J].科技与创新,2020(14):60-61,66.[2] 袁师召,李军.无人驾驶汽车路径规划研究综述[J].汽车工程师,2019(5):11-13,25.
[3] LAZAROWSKA A.Multi-criteria trajectory base path planning algorithm for a moving object in a dynamic environment[C]//2017 IEEE International Conference on Innovations in Intelligent Systems and Applications (INISTA).Piscataway:IEEE,2017:79-83.
[4] 闫守柱,薛青,罗佳,等.基于免疫遗传算法的轮式装甲车辆CGF路径规划研究[J].四川兵工学报,2014,35(10):25-28.
[5] 康冰,王曦辉,刘富.基于改进蚁群算法的搜索机器人路径规划[J].吉林大学学报(工学版),2014,44(4):1062-1068.
[6] 高岳林,武少华.基于自适应粒子群算法的机器人路径规划[J].郑州大学学报(工学版),2020,41(4):46-51.
[7] KHATIB O.Real-time obstacle avoidance for manipulators and mobile robots[J].The international journal of robotics research,1986,5(1):90-98.
[8] WANG D Y,WANG P,ZHANG X T,et al.An obstacle avoidance strategy for the wave glider based on the improved artificial potential field and collision prediction model[J].Ocean engineering,2020,206:107356.
[9] FEDELE G,D′ALFONSO L,CHIARAVALLOTI F,et al.Obstacles avoidance based on switching potential functions[J].Journal of intelligent & robotic systems,2018,90(3/4):387-405.
[10] ROSTAMI S M H,SANGAIAH A K,WANG J,et al.Obstacle avoidance of mobile robots using modified artificial potential field algorithm[J].EURASIP journal on wireless communications and networking,2019,2019(1):1-19.
[11] RAHEEM F A,BADR M M. Development of modified path planning algorithm using artificial potential field (APF) based on PSO for factors optimization[J].American scientific research journal for engineering,technology,and sciences,2017,37(1):316-328.
[12] 郭枭鹏.基于改进人工势场法的路径规划算法研究[D].哈尔滨:哈尔滨工业大学,2017.
[13] 徐小强,王明勇,冒燕.基于改进人工势场法的移动机器人路径规划[J].计算机应用,2020,40(12):3508-3512.
[14] 宣仁虎.基于改进A*算法和人工势场法智能小车路径规划研究[D].西安:西安电子科技大学,2019.
[15] 刘志强,朱伟达,倪婕,等.基于新型人工势场法的车辆避障路径规划研究方法[J].科学技术与工程,2017,17(16):310-315.