[1] SAWANT M M,BHURCHANDI K M.Age invariant face recognition:a survey on facial aging databases,techniques and effect of aging[J].Artificial intelligence review,2019,52(2):981-1008.[2] 董锁芹.基于生成对抗网络的跨年龄人脸识别技术研究[D].长春:长春理工大学,2019.
[3] WEN Y D,LI Z F,QIAO Y.Latent factor guided convolutional neural networks for age-invariant face recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE,2016:4893-4901.
[4] 苏士美,王燕,王明霞.基于加权小波分解的人脸识别算法研究[J].郑州大学学报(工学版),2014,35(1):5-9.
[5] WANG Y T,GONG D H,ZHOU Z,et al.Orthogonal deep features decomposition for age-invariant face re-cognition[C]//Computer Vision-ECCV 2018. Munich, Germany: ECCV, 2018:11219.
[6] LI H X,HU H F,YIP C.Age-related factor guided joint task modeling convolutional neural network for cross-age face recognition[J].IEEE transactions on information forensics and security,2018,13(9):2383-2392.
[7] WANG H,GONG D H,LI Z F,et al.Decorrelated adversarial learning for age-invariant face recognition[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE,2019:3522-3531.
[8] 叶继华,万叶晶,刘长红,等.基于多子空间直和特征融合的人脸识别算法[J].数据采集与处理,2016,31(1):102-107.
[9] 孙宗明,李振国,梅门昌.维数公式与子空间直和的等价条件[J].长沙大学学报,1998(2):47-50.
[10] ZHANG K P,ZHANG Z P,LI Z F,et al.Joint face detection and alignment using multitask cascaded convolutional networks[J].IEEE signal processing letters,2016,23(10):1499-1503.
[11] YI D,LEI Z,LIAO S C,et al.Learning face representation from scratch[EB/OL]. (2014-11-28)[2020-08-31]. https://arxiv.org/pdf/1411.7923.pdf.
[12] RICANEK K,TESAFAYE T.MORPH:a longitudinal image database of normal adult age-progression[C]//7th International Conference on Automatic Face and Gesture Recognition (FGR06).Piscataway:IEEE,2006:341-345.
[13] CHEN B C,CHEN C S,HSU W H.Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset[J].IEEE transactions on multimedia,2015,17(6):804-815.
[14] ZHENG T Y,DENG W H,HU J N.Cross-Age LFW:a database for studying cross-age face recognition in unconstrained environments[EB/OL]. (2017-08-28)[2020-08-31].https://arxiv.org/pdf/1708.08197.pdf.
[15] CHEN B C,CHEN C S,HSU W H.Cross-age reference coding for age-invariant face recognition and retrieval[C]//Computer Vision-ECCV 2014. Cham: Springer, 2014:768-783.
[16] GONG D H,LI Z F,TAO D C,et al.A maximum entropy feature descriptor for age invariant face recognition[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE,2015:5289-5297.
[17] LI Z F,GONG D H,LI X L,et al.Aging face recognition:a hierarchical learning model based on local patterns selection[J].IEEE transactions on image processing,2016,25(5):2146-2154.
[18] ZHENG T Y,DENG W H,HU J N.Age estimation guided convolutional neural network for age-invariant face recognition[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Piscataway:IEEE,2017:503-511.
[19] LING C X, HUANG J, ZHANG H. AUC: a better measure than accuracy in comparing learning algorithms[C]// Advances in Artificial Intelligence, 16th Conference of the Canadian Society for Computational Studies of Intelligence, AI 2003. Cham: Springer,2003:1-25.
[20] CHEN D, CAO X D,WEN F,et al.Blessing of dimensionality:high-dimensional feature and its efficient compression for face verification[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2013:3025-3032.
[21] PARKHI O M, VEDALDI A, ZISSERMAN A. Deep face recognition[C]//British Machine Vision Conference 2015. Swansea, UK: BMVA, 2015:1-12.
[22] CHEN B H, DENG W H, DU J P. Noisy softmax: improving the generalization ability of DCNN via postponing the early softmax saturation[C]//IEEE Conference on Computer Vision and Pattern Recognition 2017. Piscataway: IEEE,2017: 4021-4030.