[1]郑倩,刘珊,邓璐娟,等.基于平行四边形对角线理论的角点检测算法[J].郑州大学学报(工学版),2021,42(04):19-25.[doi:10.13705/j.issn.1671-6833.2021.02.017]
 Zheng Qian,Liu Shan,Deng Lujuan,et al.Corner Detection Algorithm Based on Parallelogram Diagonal Theory[J].Journal of Zhengzhou University (Engineering Science),2021,42(04):19-25.[doi:10.13705/j.issn.1671-6833.2021.02.017]
点击复制

基于平行四边形对角线理论的角点检测算法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
42
期数:
2021年04期
页码:
19-25
栏目:
出版日期:
2021-07-30

文章信息/Info

Title:
Corner Detection Algorithm Based on Parallelogram Diagonal Theory
作者:
郑倩刘珊邓璐娟王强张世征
郑州轻工业大学软件学院;
Author(s):
Zheng Qian; Liu Shan; Deng Lujuan; Wang Qiang; Zhang Shizheng;
Zhengzhou Light Industry University School of Software;
关键词:
Keywords:
corner detectionratio of parallelogram diagonalscomputational complexityrobustness
DOI:
10.13705/j.issn.1671-6833.2021.02.017
文献标志码:
A
摘要:
目的 角点检测是图像处理和计算机视觉领域的基本任务,角点响应函数构造的复杂性或对曲线进行多次平滑的操作会制约角点检测方案的检测效率。针对这一问题,本文提出了一种利用平行四边形对角线之比快速估计曲率的角点检测算法。方法 首先,利用Canny边缘检测器提取边缘轮廓线,并通过各向异性高斯方向导数滤波器对边缘线进行光滑,其次,利用提出的角点响应函数估计曲线上每个像素点的“离散”曲率,将曲率值大于设定阈值的像素作为候选角;最后,对候选角进行非极大抑制,保留精确的角点集,删除弱角点和伪角点。结果 与现有五种基于轮廓的角点检测算法相比,本文算法不需要平方根运算,在相同的图像测试集下,重复率较高,位置更加准确,而且角点检测速度约是CTAR的3倍。结论 提出了一种新的基于轮廓的角点检测算法,利用平行四边形对角线之比计算角点响应函数,避免了平方根运算,降低计算复杂度。而且,该方法不仅具有优异的角点检测性能,还对噪声具有良好的鲁棒性,并且还可用于从复杂的医学图像提取角点。
Abstract:
Corner detection is one of the fundamental topics in image processing and computer vision.The complexity of the construction of the corner response function or the multiple smoothing of the curve often restricts detection efficiency of the corner detection scheme.Thus,a novel method for image corner detection based on the diagonal of a parallelogram to was proposed estimate the curvature value in this paper.Firstly,the Canny edge detector was used to extract each edge contour from the input image.Secondly,curves were smoothed by using anisotropic Gaussian directional derivative filter,the discrete curvature of each pixel on the curve were estimated according to the corner response function proposed in this paper.And then,non-maximum suppression was applied to the candidate corner sets.Finally,the refined corner sets were retained with unstable and false corners removed.Compared with the existing five contour-based corner detection algorithms,the proposed algorithm did not require square root operation.The extensive experiments showed that the developed method could give the highest average repeatability and lowest localization error than the other five detectors,while the corner detection speed was about 3 times that of CTAR.The results showed that the corner detection algorithm using the ratio of parallelogram diagonals (FRPD)not only had excellent corner detection performance,but also greatly reduced the computational complexity,and has a good noise robustness.

参考文献/References:

[1] 刘妍,余淮,杨文,等.利用SAR-FAST角点检测的合成孔径雷达图像配准方法[J].电子与信息学报,2017,39(2):430-436.

[2] 张青建,韩建平.一种基于RGB-D的人体关节点定位方法[J].郑州大学学报(工学版),2018,39(5):33-38.
[3] 逯鹏,梁玉,陈树伟.基于角点动能的视频群体异常行为检测[J].郑州大学学报(工学版),2015,36(3):20-24.
[4] 李云红,何亚瑞,章为川,等.利用点弦距离递归的图像角点检测算法[J].中国图象图形学报,2019,24(7):1148-1159.
[5] LIN X Y,ZHU C,LIU Y P,et al.Robust corner detection using altitude to chord ratio accumulation[J].Multimedia tools and applications,2019,78(1):177-195.
[6] MOKHTARIAN F,SUOMELA R.Robust image corner detection through curvature scale space[J].IEEE transactions on pattern analysis and machine intelligence,1998,20(12):1376-1381.
[7] ZHONG B J,LIAO W H.Direct curvature scale space:theory and corner detection[J].IEEE transactions on pattern analysis and machine intelligence,2007,29(3):508-512.
[8] ZHANG X H,LEI M,YANG D,et al.Multi-scale curvature product for robust image corner detection in curvature scale space[J].Pattern recognition letters,2007,28(5):545-554.
[9] AWRANGJEB M,LU G J.Robust image corner detection based on the chord-to-point distance accumulation technique[J].IEEE transactions on multimedia,2008,10(6):1059-1072.
[10] ROSENFELD A,JOHNSTON E.Angle detection on digital curves[J].IEEE transactions on computers,1973,22(9):875-878.
[11] TENG S W,SADAT R M N,LU G J.Effective and efficient contour-based corner detectors[J].Pattern recognition,2015,48(7):2185-2197.
[12] AWRANGJEB M,LU G J.A performance review of recent corner detectors[C]//2013 International Conference on Digital Image Computing:Techniques and Applications (DICTA).Piscataway:IEEE,2013:1-8.
[13] CANNY J.A computational approach to edge detection[J].IEEE transactions on pattern analysis and machine intelligence,1986,8(6):679-698.
[14] ZHANG X H,WANG H X,SMITH A W B,et al.Corner detection based on gradient correlation matrices of planar curves[J].Pattern recognition,2010,43(4):1207-1223.
[15] AWRANGJEB M.Data set [EB/OL].(2015-05-25)[2020-06-10].http://users.monash.edu.au/~mawrangj/corner.html.
[16] AWRANGJEB M,LU G J,MURSHEDM.An affine resilient curvature scale-space corner detector[C]//2007 IEEE International Conference on Acoustics,Speech and Signal Processing-ICASSP ′07.Piscataway:IEEE,2007:1233-1236.
[17] AWRANGJEB M,LU G J,FRASER C S,et al.A fast corner detector based on the chord-to-point distance accumulation technique[C]//2009 Digital Image Computing:Techniques and Applications.Piscataway:IEEE,2009:519-525.
[18] LIN X Y,ZHU C,ZHANG Q,et al.Efficient and robust corner detectors based on second-order difference of contour[J].IEEE signal processing letters,2017,24(9):1393-1397.
[19] ZHANG S Z,HUANG S,ZHANG Z F,et al.Corner detection based on tangent-to-point distance accumulation technique[J].Multimedia tools and applications,2019,78(18):25685-25706.

更新日期/Last Update: 2021-08-26