[1]苏守宝,赵威,李智.求解加权MTSP问题的CUDA并行群智能方法[J].郑州大学学报(工学版),2021,42(06):35-42.[doi:10.13705/j.issn.1671-6833.2021.04.009]
 Su Shoubao,Zhao Wei,Li Zhi,et al.A CUDA Parallel Swarm Intelligence Approach to Solving Weighted MTSP Problems[J].Journal of Zhengzhou University (Engineering Science),2021,42(06):35-42.[doi:10.13705/j.issn.1671-6833.2021.04.009]
点击复制

求解加权MTSP问题的CUDA并行群智能方法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
42
期数:
2021年06期
页码:
35-42
栏目:
出版日期:
2021-11-10

文章信息/Info

Title:
A CUDA Parallel Swarm Intelligence Approach to Solving Weighted MTSP Problems
作者:
苏守宝赵威李智
江苏科技大学计算机学院;金陵科技学院数据科学与智慧软件江苏省重点实验室;
Author(s):
Su Shoubao; Zhao Wei; Li Zhi;
School of Computer, Jiangsu University of Science and Technology; Data Science and Smart Software of Jinling Institute of Technology in Jiangsu Province;
关键词:
Keywords:
multiple traveling salesman problem(MTSP) CUDA parallel algorithm cost-balanced particle swarm clustering ant colony algorithm
DOI:
10.13705/j.issn.1671-6833.2021.04.009
文献标志码:
A
摘要:
针对使用混合迭代启发式算法求解多旅行商问题(MTSP)执行速度慢的问题,根据群智能算法具有良好的并行特性,对粒子群算法和蚁群算法在GPU上并行化实现和编程优化等方面进行相关研究后,提出一种基于CUDA的混合粒子群聚类-蚁群算法(GPSO-AC)。该算法利用GPU具有多个流处理器和单指令多数据(SIMT)的架构特点,将算法中的大量独立个体的搜索过程同时执行。实验表明,该算法执行速度远快于CPU版算法且随着问题规模扩大速度差距越明显,在收敛精度上也优于同类算法,同时探讨了加入代价均衡约束后对含权MTSP问题最优解收敛精度的影响。
Abstract:
To solve the low running speed of the multi-traveling salesman problem (MTSP) using the heuristic method, a CUDA-based hybrid particle swarm clustering-ant colony algorithm (GPSO-AC) was proposed by integrating their parallel characteristics with programming techniques optimally. GPSO-AC used GPU′s instruction architecture with multiple stream processors (SM) and single instruction multithreading (SIMT) to parallel the search process of numerous independent individuals, so as to accelerate the execution speed of the hybrid iterative method. GPSO-AC was tested on 6 datasets compared with other methods, such as PSO-AC, TPHA and K-means-AC. Then the influence of cost equilibrium constraint on the convergence performance of the optimal solution of weighted MTSP problem was discussed. Furthermore, the cost standard deviations obtained from GPSO-AC on chn31 with different traveling salesmen, were 1 165.26, 54.97 and 6.74 in the three cases respectively. The experimental results showed that the proposed algorithm was much faster than other CPU based algorithms and the advantage becomed more obvious with the expansion of the model size, and the convergence precision of the algorithm was better than the similar algorithms for solving MTSP problems.

参考文献/References:

[1] 寿涛,刘朝晖.基于Delaunay三角剖分处理二维欧式空间MTSP的近似算法[J].华东理工大学学报(自然科学版),2017,43(6):895-898.

[2] 刘楠.巡检线路的哈密顿圈分割模型及算法[J].甘肃科学学报,2018,30(3):15-18.
[3] TRIGUI S,CHEIKHROUHOU O,KOUBAA A,et al.FL-MTSP:a fuzzy logic approach to solve the multi-objective multiple traveling salesman problem for multi-robot systems[J].Soft computing,2017,21(24):7351-7362.
[4] 张美燕,蔡文郁.基于多AUV间任务协作的水下多目标探测路径规划[J].传感技术学报,2018,31(7):1101-1107.
[5] XU X L,YUAN H,LIPTROTT M,et al.Two phase heuristic algorithm for the multiple-travelling salesman problem[J].Soft computing,2018,22(19):6567-6581.
[6] ZHAO M R,TANG H L,GUO J,et al.Data clustering using particle swarm optimization [J]. Lecture notes in electrical engineering,2014,309:607-612.
[7] SU S B, CAO X B. Jumping PSO with expanding neighborhood search for TSP on a cuboid[J].Chinese journal of electronics, 2013, 22(1):202-208.
[8] TUANI A F,KEEDWELL E,COLLETT M.Heterogenous adaptive ant colony optimization with 3-opt local search for the travelling salesman problem[J].Applied soft computing,2020,97:106720.
[9] 许凯波,鲁海燕,程毕芸,等.求解TSP的改进信息素二次更新与局部优化蚁群算法[J].计算机应用,2017,37(6):1686-1691.
[10] 叶多福,刘刚,何兵.一种多染色体遗传算法解决多旅行商问题[J].系统仿真学报,2019,31(1):36-42.
[11] TUANI A F,KEEDWELL E,COLLETT M.H-ACO:a heterogeneous ant colony optimisation approach with application to the travelling salesman problem[C]// International Conference on Artificial Evolution.Berlin:Springer,2018: 144-161.
[12] BALI O,ELLOUMI W,ABRAHAM A,et al.ACO-PSO optimization for solving TSP problem with GPU acceleration[C]//Intelligent systems design and applications.Berlin:Springer,2017: 559-569.
[13] JIANG C,WAN Z P,PENG Z H.A new efficient hybrid algorithm for large scale multiple traveling salesman problems[J].Expert systems with applications,2020,139:112867.
[14] 梁静,刘睿,瞿博阳,等.进化算法在大规模优化问题中的应用综述[J].郑州大学学报(工学版),2018,39(3):15-21.

更新日期/Last Update: 2021-12-17