[1]李阳,李净凯,邹云,等.超声纳米表面改性对316L不锈钢耐磨性能的影响[J].郑州大学学报(工学版),2021,42(06):50-55.[doi:10.13705/j.issn.1671-6833.2021.06.005]
 LI Yang,LI Jingkai,ZOU Yun,et al.Effect of Ultrasonic Nanocrystal Surface Modification on Wear Property of 316L stainless steel[J].Journal of Zhengzhou University (Engineering Science),2021,42(06):50-55.[doi:10.13705/j.issn.1671-6833.2021.06.005]
点击复制

超声纳米表面改性对316L不锈钢耐磨性能的影响()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
42
期数:
2021年06期
页码:
50-55
栏目:
出版日期:
2021-11-10

文章信息/Info

Title:
Effect of Ultrasonic Nanocrystal Surface Modification on Wear Property of 316L stainless steel
作者:
李阳李净凯邹云刘书豪李大磊
郑州大学机械与动力工程学院;
Author(s):
LI Yang LI Jingkai ZOU Yun LIU Shuhao LI Dalei
School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China
关键词:
Keywords:
316L stainless steel ultrasonic nanocrystal surface modification residual stress wear resistance
DOI:
10.13705/j.issn.1671-6833.2021.06.005
文献标志码:
A
摘要:
为了改善316L奥氏体不锈钢的耐磨性能,采用超声纳米表面改性(UNSM)方法,在材料表面制备梯度纳米结构(GNS)表层。利用硬度计,微纳米力学测试系统,高速X-射线残余应力分析仪和扫描电镜等对试样表层的硬度,残余应力和显微组织进行表征,研究了不同层深梯度纳米结构表层的耐磨性能。结果表明:经过UNSM处理后,316L不锈钢的表面存在晶粒细化;梯度纳米结构表层的厚度随着UNSM处理次数的增加而增加;与未处理样品相比,表面残余压应力(CRS)从-413MPa增加到-1193MPa,表面显微硬度从306HV0.2增加到405HV0.2;UNSM处理三次时磨擦系数最小。研究表明,超声纳米表面改性能显著改善316L不锈钢的表面性能,降低摩擦系数。
Abstract:
In order to improve the wear resistance of 316L austenitic stainless steel, a gradient nanostructured (GNS) surface layer was formed by ultrasonic nanocrystal surface modification (UNSM) method. The microhardness, residual stress and microstructure of the sample surface were studied by microhardness tester, nanoindentation tester, X-ray residual stress analyzer and scanning electron microscopy. And the wear resistance of gradient nanostructured surface layers with different depth was studied. The results showed that grain refinement existed on the surface of 316L stainless steel after UNSM treatment and the thickness of gradient nanostructure layer increased with the increase of treatment times. Compared to the untreated samples, the surface residual compressive stress increased from -413 MPa to -1 193 MPa, the surface microhardness increased from 306 HV0.2 to 405 HV0.2, and the friction coefficient was the least when the UNSM was treated three times. The results showed that the surface properties of 316L stainless steel were significantly improved by ultrasonic nano-surface modification, and the friction coefficient was reduced.

参考文献/References:

[1] 孙伶俐,何声馨,刘坤坤,等.316不锈钢拉伸过程微观结构演化研究[J].钢铁钒钛,2018,39(4):142-145,151.

[2] 李烨,周文龙,何勇辉,等.316L不锈钢疲劳过程微观结构演化[J].金属功能材料,2020,27(6):24-27.
[3] 张凯.具有梯度纳米结构表层轴承钢的制备及疲劳和摩擦行为[D].北京:中国科学院大学,2017.
[4] LI X Y,LU L,LI J G,et al.Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys[J].Nature reviews materials,2020,5(9):706-723.
[5] WANG P F,HAN Z.Friction and wear behaviors of a gradient nano-grained AISI 316L stainless steel under dry and oil-lubricated conditions[J].Journal of materials science & technology,2018,34(10):1835-1842.
[6] AZAR V,HASHEMI B,YAZDI M R.The effect of shot peening on fatigue and corrosion behavior of 316L stainless steel in Ringer′s solution[J].Surface and coatings technology,2010,204(21/22):3546-3551.
[7] 胡君杰.超声滚压对60Si2CrVAT弹簧钢表面完整性和疲劳性能的影响[D].贵阳:贵州大学,2017.
[8] 刘治华,张天增,杨孟俭,等.超声滚压18CrNiMo7-6齿轮钢表面变质层性能分析[J].郑州大学学报(工学版),2020,41(2):44-49,79.
[9] American society for testing and materials.Standard test method for verifying the alignment of X-ray diffraction instrumentation for residual stress measurement:E915-16[S]Pennsylvania:ASTM,2016:1-4.
[10] LI X,GUAN B,JIA Y F,et al.Microstructural evolution,mechanical properties and thermal stability of gradient structured pure nickel[J].Acta metallurgica sinica (English letters),2019,32(8):951-960.
[11] YANG J,LIU D X,ZHANG X H,et al.The effect of ultrasonic surface rolling process on the fretting fatigue property of GH4169 superalloy[J].International journal of fatigue,2020,133:105373.
[12] WANG H B,SONG G L,TANG G Y.Enhanced surface properties of austenitic stainless steel by electropulsing-assisted ultrasonic surface rolling process[J].Surface and coatings technology,2015,282:149-154.
[13] KANCHIDURAI S,KRISHANAN P A,BASKAR K,et al.A review of inducing compressive residual stress-shot peening:on structural metal and welded connection[J].IOP conference series:earth and environmental science,2017,80(1):012033.
[14] SOYAMA H,CHIGHIZOLA C R,HILL M R.Effect of compressive residual stress introduced by cavitation peening and shot peening on the improvement of fatigue strength of stainless steel[J].Journal of materials processing technology,2021,288:116877.
[15] ZOU Y,XU Y F,LI J K,et al.Evaluation of surface integrity in 18CrNiMo7-6 steel after multiple abrasive waterjet peening process[J].Metals,2020,10(6):844.
[16] AMANOV A.Effect of local treatment temperature of ultrasonic nanocrystalline surface modification on tribological behavior and corrosion resistance of stainless steel 316L produced by selective laser melting[J].Surface and coatings technology,2020,398:126080.
[17] ARCHARD J F.Contact and rubbing of flat surfaces[J].Journal of applied physics,1953,24(8):981-988.
[18] 卢柯,刘学东,胡壮麒.纳米晶体材料的Hall-Petch关系[J].材料研究学报, 1994,8(5):385-391.

更新日期/Last Update: 2021-12-17