[1]李强,段浩宇,高镜清,等.矿渣硅酸盐水泥除磷性能与机理研究[J].郑州大学学报(工学版),2022,43(03):73-80.[doi:10.13705/j.issn.1671-6833.2021.06.007]
 Research on Phosphorus Removal Performance of Portland Blast Furnace Slag Cement.Research on Phosphorus Removal Performance of Portland Blast Furnace Slag Cement[J].Journal of Zhengzhou University (Engineering Science),2022,43(03):73-80.[doi:10.13705/j.issn.1671-6833.2021.06.007]
点击复制

矿渣硅酸盐水泥除磷性能与机理研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
43
期数:
2022年03期
页码:
73-80
栏目:
出版日期:
2022-04-10

文章信息/Info

Title:
Research on Phosphorus Removal Performance of Portland Blast Furnace Slag Cement
作者:
李强1段浩宇1高镜清1褚军辉1周昊昕2朱桐豆1金银珠1
1.郑州大学生态与环境学院;2.郑州大学水利科学与工程学院;

Author(s):
Research on Phosphorus Removal Performance of Portland Blast Furnace Slag Cement
1.School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; 
2.School of Water Conservancy and Engineering, Zhengzhou University, Zhengzhou 450001, China
关键词:
Keywords:
portland blast furnace slag cement adsorption phosphorous wastewater ligand exchange
分类号:
X703. 1
DOI:
10.13705/j.issn.1671-6833.2021.06.007
文献标志码:
A
摘要:
为了解决高浓度含磷污水深度净化问题,探究矿渣硅酸盐水泥的除磷潜能,利用矿渣硅酸盐水泥对初始磷质量浓度为150 mg/L 的含磷废水进行吸附性能研究。结合扫描电子显微镜(SEM)、X射线衍射(XRD)等方法,对矿渣硅酸盐水泥磷吸附前后的表面形貌和晶体结构等进行表征和分析。吸附动力学实验结果表明:矿渣硅酸盐水泥可有效处理高浓度含磷废水,去除率可达90.3% ,吸附量可达27 mg/g,准二级动力学模型和颗粒内扩散模型能较好地解释其吸附动力学过程,除磷速率主要受化学反应速率限制,相比于表面吸附,颗粒内扩散是吸附过程中的决定性步骤。此外,吸附等温线研究结果表明:吸附过程可以用Freundlich和 Langmuir方程描述,相关系数均在0.97以上,说明矿渣硅酸盐水泥既发生了单分子层吸附,又发生了多分子层吸附,且其表面不均匀活性位点略强于均匀活性位点,Langmuir模型预估其最大吸附量可达47 mg/g。通过正交试验得出最佳反应条件:pH值为7,初始磷质量浓度为150 mg/L,投加量为5 g/L,吸附时间为18 h。在溶液不同初始pH值的条件下,矿渣硅酸盐水泥磷饱和吸附后出水表明其可以有效中和过量的酸或碱,具有良好的缓冲特性,化学吸附中的配位体交换是其主要的除磷机理。矿渣硅酸盐水泥适用于高浓度含磷废水,也适用于pH值不稳定的含磷废水。
Abstract:
This study aimed to solve the problem of deep purification of high concentration phosphorus wastewater and to explore the phosphorus removal potential of portland blast furnace slag cement.The adsorption of the wastewater containing 150 mg/L TP on portland blast furnace slag cement was discussed.Combined with scanning electron microscopy(SEM)and X-ray diffraction(XRD), the surface morphology and crystal structure of portland blast furnace slag cement before and after phosphorus adsorption were characterized and analyzed.The results of adsorption kinetics experiments showed that portland blast furnace slag cement as a adsorbent could treat high phosphorus-containing wastewater, removal rate up to 90.3%, adsorption capacity up to 27 mg/g, the adsorption kinetic process could be well explained by using pseudo-second-order kinetic model and intra-particle diffusion model, the dephosphorization rate is mainly limited by the chemical reaction rate, compared with surface adsorption, intra-particle diffusion is the decisive step in the adsorption process.In addition, isotherm studies showed that phosphorus adsorption on portland blast furnace slag cement fitted the Freundlich and Langmuir model, with the correlation coefficients over 0.97.The results indicated that both single-layer adsorption and multi-layer adsorption occurred in portland blast furnace slag cement, and the non-uniform active sites on the surface were slightly stronger than the uniform active sites, the maximum phosphorus adsorption capacity determined by Langmuir isotherm plot was 47 mg/g.Through orthogonal experiments, the optimal reaction conditions were as follows: pH is 7, initial phosphorus concentration is 150 mg/L, dosage is 5 g/L, contact time is 18 h.The portland blast furnace slag cement can effectively neutralize the excess acid and alkali, and has good buffering characteristics, which may be related to the protonation and deprotonation of the metal ions, the ligand exchange in chemisorption was the main mechanism of phosphorus removal.Portland blast furnace slag cement is suitable for high concentration of phosphorus containing wastewater, also suitable for pH unstable phosphorus containing wastewater.

参考文献/References:

[1] KURZBAUM E, BAR SHALOM O. The potential of phosphate removal from dairy wastewater and municipal wastewater effluents using a lanthanum-modified bentonite[ J] . Applied clay science,2016,123:182-186.

 [2] 刘波,陈玉成,王莉玮,等. 4 种人工湿地填料对磷的 吸附 特 性 分 析 [ J] . 环 境 工 程 学 报, 2010, 4 ( 1 ) : 44-48.
 [3] 黄添浩,林磊,王趁义,等. 吸氮除磷材料的研究和 应用现状 [ J ] . 化 工 新 型 材 料, 2019, 47 ( 3 ) : 39 - 42,46. 
[4] SUN T T,DU R, DAN Q P, et al. Rapidly achieving partial nitrification of municipal wastewater in enhanced biological phosphorus removal ( EBPR ) reactor:effect of heterotrophs proliferation and microbial interactions [ J ] . Bioresource technology, 2021, 340:125712. 
[5] 彭赵旭,韩微,娄天宇,等. 剩余污泥驯化过程中的 除磷性 能 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2020, 41 (5) :72-75,96.
 [6] ARBELAEZ BRETON L,MAHDI Z,PRATT C,et al. Modification of hardwood derived biochar to improve phosphorus adsorption [ J ] . Environments, 2021, 8 (5) :41.
 [7] WU B L,WAN J,ZHANG Y Y,et al. Selective phosphate removal from water and wastewater using sorption: process fundamentals and removal mechanisms [ J ] . Environmental science & technology, 2020, 54 (1) :50-66.
 [8] BROOKS A S,ROZENWALD M N,GEOHRING L D, et al. Phosphorus removal by wollastonite:a constructed wetland substrate[ J] . Ecological engineering,2000,15 (1 / 2) :121-132.
 [9] GUSTAFSSON J P,RENMAN A,RENMAN G, et al. Phosphate removal by mineral-based sorbents used in filters for small-scale wastewater treatment [ J] . Water research,2008,42(1 / 2) :189-197. 
[10] 籍国东,孙铁珩,李顺. 人工湿地及其在工业废水处理 中的应用[J]. 应用生态学报,2002,13(2):224-228.
 [11] YANG Y,ZHAO Y Q,BABATUNDE A O,et al. Characteristics and mechanisms of phosphate adsorption on dewatered alum sludge[ J] . Separation and purification technology,2006,51(2) :193-200.
 [12] LIU R B,MAO Y, SHEN C, et al. Can biofilm affect alum sludge adsorption:an engineering scope in a novel biofilm reactor for wastewater treatment[ J] . Chemical engineering journal,2017,328:683-690.
 [13] LIU R B,ZHAO Y Q,SIBILLE C,et al. Evaluation of natural organic matter release from alum sludge reuse in wastewater treatment and its role in P adsorption [ J]. Chemical engineering journal,2016,302:120-127.
 [14] WEI Y F,LIANG X J,WU H H,et al. Efficient phosphate removal by dendrite-like halloysite-zinc oxide nanocomposites prepared via noncovalent hybridization [ J] . Applied clay science,2021,213:106232. 
[15] ZHANG G S, LIU H J, LIU R P, et al. Removal of phosphate from water by a Fe-Mn binary oxide adsorbent [ J ] . Journal of colloid and interface science, 2009,335(2) :168-174.
 [16] YANG Y,ZHAO Y Q,LIU R B,et al. Global development of various emerged substrates utilized in constructed wetlands [ J] . Bioresource technology, 2018, 261: 441-452.
 [17] GAO J Q,ZHAO J,ZHANG J S,et al. Preparation of a new low-cost substrate prepared from drinking water treatment sludge ( DWTS ) / bentonite / zeolite / fly ash for rapid phosphorus removal in constructed wetlands [ J] . Journal of cleaner production,2020,261:121110. 
[18] 国家环境保护总局. 水质 总磷的测定 钼酸铵分光 光度法:GB 11893—1989[ S] . 北京:中国标准出版 社, 1989.
 [19] ZHANG R C, LEIVISKÄ T. Surface modification of pine bark with quaternary ammonium groups and its use for vanadium removal [ J ] . Chemical engineering journal,2020,385:123967.
 [20] CHUNG H K,KIM W H,PARK J,et al. Application of langmuir and freundlich isotherms to predict adsorbate removal efficiency or required amount of adsorbent [ J] . Journal of industrial and engineering chemistry, 2015,28:241-246.
 [21] 徐颖,叶志隆,叶欣,等. 给水污泥对水中磷的吸附 性能[ J] . 环境工程学报,2018,12(3) :712-719.
 [22] CHEN J G, KONG H N, WU D Y, et al. Phosphate immobilization from aqueous solution by fly ashes in relation to their composition [ J] . Journal of hazardous materials,2007,139(2) :293-300.
 [23] LI Q,ZHANG J S,GAO J Q,et al. Preparation of a novel non-burning polyaluminum chloride residue ( PACR) compound filler and its phosphate removal mechanisms[ J] . Environmental science and pollution research,2021:1-14. [24] 王信,马啸宙,周雯,等. 给水污泥负载 Fe 合物除磷 行为效果及机理[ J] . 环境工程学报,2016,10( 10) : 5420-5428.
 [25] 杨永哲,赵亚乾,BABATUNDE A,等. 给水厂铝污泥 对磷的吸附特性及陈化时间的影响[ J] . 中国给水 排水,2015,31(11) :137-141.
 [26] ZHANG L L, LU Y D,KANG J F, et al. Selection of optimum composition of aluminoborosilicate glasses with excellent dielectric properties according to orthogonal experiment design [ J] . Journal of materials science: materials in electronics, 2018, 29 ( 7 ) : 5746-5752. 
[27] 王诗博,宁平,瞿广飞,等. 改性麦饭石吸附除磷性 能研究 [ J] . 化 工 新 型 材 料, 2017, 45 ( 12 ) : 137 - 140,144.
 [28] 赵先富,马沛明,邱昌恩,等. 聚合硫酸铁除磷效果 及藻类的生理生态响应[ J] . 中国环境科学,2010, 30(增刊 1) :14-18.

相似文献/References:

[1]张婕,尚成江,陈卫航,等.胺基化杂化微球对溶解中Cu(II)和Pb(II)的吸附[J].郑州大学学报(工学版),2015,36(05):1.[doi:10.3969/ j.issn.1671 -6833.2015.05. 001]
 ZHANG Jie,SHANG Cheng-jiang,Chen Wei-hang,et al.Adsorption of Cu( II) and Pb( II) in Solution of Aminated Hybrid Microspheres[J].Journal of Zhengzhou University (Engineering Science),2015,36(03):1.[doi:10.3969/ j.issn.1671 -6833.2015.05. 001]
[2]范忠雷,马翔宇,李瑞瑞,等.吸附剂浓度对Cu(II)/ IIP-PAA/SiO2吸附体系的影响[J].郑州大学学报(工学版),2017,38(03):35.[doi:10.13705/j.issn.1671-6833.2017.03.003]
 Fan Zhonglei,Ma Xiangyu,Li Ruirui,et al.Effect of sorbent concentration on Cu(II) adsorption at surface ion-imprinted poly(allylamine)-silica material[J].Journal of Zhengzhou University (Engineering Science),2017,38(03):35.[doi:10.13705/j.issn.1671-6833.2017.03.003]
[3]盛遵荣,薛冰,刘周明,等.颗粒直径与轴向分布对吸附热变换器传热传质的影响[J].郑州大学学报(工学版),2017,38(04):17.[doi:10.3969/j.issn.1671-6833.2017.01.011]
 Sheng Zunrong,Xue Bing,Liu Zhouming,et al.Effect of particle diameter and particle axial distribution on heat and mass transfer inside adsorption heat transformer[J].Journal of Zhengzhou University (Engineering Science),2017,38(03):17.[doi:10.3969/j.issn.1671-6833.2017.01.011]
[4]史春燕,范冰冰,李娅娅,等.锆氧化物/石墨烯的制备及其对PO43-的吸附性能[J].郑州大学学报(工学版),2017,38(04):23.[doi:10.13705/j.issn.1671-6833.2017.01.009]
 Shi Chunyan,Fan Bingbing,Li Yaya,et al.Preparation of Zirconium Oxide / Graphene Composites and their Adsorption Properties for PO43-[J].Journal of Zhengzhou University (Engineering Science),2017,38(03):23.[doi:10.13705/j.issn.1671-6833.2017.01.009]
[5]韩润平,房丽燕,李小钰,等.聚乙烯亚胺负载四氧化三铁对刚果红的吸附性能[J].郑州大学学报(工学版),2019,40(02):62.[doi:10.13705/j.issn.1671-6833.2019.02.009]
 Han Runping,Fang Liyan,Li Xiaoyu,et al.Removal of Congo red by polyethylenimine@Fe3O4 magnetic composites in batch mode[J].Journal of Zhengzhou University (Engineering Science),2019,40(03):62.[doi:10.13705/j.issn.1671-6833.2019.02.009]
[6]邹卫华,刘鹏磊,刘秋节,等.磁性活性炭对水体中磺胺嘧啶钠的吸附机理研究[J].郑州大学学报(工学版),2020,41(04):92.[doi:10.13705/j.issn.1671-6833.2020.01.008]
 ZOU Weihua,LIU Penglei,LIU Qiujie,et al.Investigation into the Adsorption Mechanism of Sulfadiazine Sodium in Aqueous Solution Using Magnetic Biochar[J].Journal of Zhengzhou University (Engineering Science),2020,41(03):92.[doi:10.13705/j.issn.1671-6833.2020.01.008]
[7]张晓羽,郭红博,邹卫华.PEI改性沙柳对水中酸性铬兰K的吸附作用研究[J].郑州大学学报(工学版),2022,43(03):87.[doi:10.13705/j.issn.1671-6833.2022.03.002]
 ZHANG Xiaoyu,GUO Hongbo,ZOU Weihua.Investigation into the Adsorption Mechanism of Acid Chrome Blue K in Aqueous Solution Using Polyethyleneimine Modified Salix[J].Journal of Zhengzhou University (Engineering Science),2022,43(03):87.[doi:10.13705/j.issn.1671-6833.2022.03.002]
[8]韩秀丽,王伟,李红萍..生物质材料荷叶对碱性品红的吸附性能研究[J].郑州大学学报(工学版),2011,32(03):10.[doi:10.3969/j.issn.1671-6833.2011.03.003]
[9]高广颖,蒋元力,黄强,等.考虑载体影响的液膜体系界面状态方程[J].郑州大学学报(工学版),1998,19(04):94.
 Gao Guangying,Jiang Yuanli,Huang Qiang,et al.Consider the liquid film system interface status equation that affects the carrier[J].Journal of Zhengzhou University (Engineering Science),1998,19(03):94.
[10]秦统福,锺贤.乙醇——水气相吸附分离工艺的研究[J].郑州大学学报(工学版),1992,13(02):66.
 Qin Tongfu,Xianxian,Ethanol -Research on the separation of water and gas phase adsorption[J].Journal of Zhengzhou University (Engineering Science),1992,13(03):66.

更新日期/Last Update: 2022-05-02