[1] 魏冉. 基于 LSDV 估计法的中国主要品种能源消费 影响碳排放强度效应分析[ J] . 郑州大学学报( 工学 版) ,2019,40(2) :87-91. WEI R. The impact evaluation of the consumption of main types of energy in China on carbon emission intensity based on LSDV estimation [ J ] . Journal of Zhengzhou university ( engineering science ) , 2019, 40(2) : 87-91.
[2] 巩金龙. CO2 化 学 转 化 研 究 进 展 概 述 [ J] . 化 工 学 报,2017,68(4) :1282-1285.
GONG J L. A brief overview on recent progress on chemical conversion of CO2 [ J ] . CIESC journal, 2017, 68(4) : 1282-1285.
[3] 刘洋洋,孙超,SINGH M H,等. 载体对铁基催化剂 结构及 CO2 加氢制烯烃反应性能的影响特性[ J] . 化工学报,2020,71(10) :4652-4662.
LIU Y Y, SUN C, SINGH M H, et al. Effects of identities of supports on Fe-based catalyst and their consequences on activities of CO2 hydrogenation to olefins [ J ] . CIESC journal, 2020, 71 ( 10 ) : 4652 -4662.
[4] 张玉龙,邵光印,张征湃,等. 活化气氛对 CO2 加氢 制取低碳烯烃 Fe-K 催化剂构-效关系[ J] . 化工学 报,2018,69(2) :690-698.
ZHANG Y L, SHAO G Y, ZHANG Z P, et al. Activation atmospheres on structure-performance relationship of K-promoted Fe catalysts for lower olefin synthesis from CO2 hydrogenation [ J]. CIESC journal, 2018, 69 ( 2): 690-698.
[5] ZHU J,ZHANG G H,LI W H,et al. Deconvolution of the particle size effect on CO2 hydrogenation over ironbased catalysts[ J] . ACS catalysis,2020,10(13) :7424 -7433.
[6] 尹浩人. 碱金属和过渡金属修饰的 Fe 基催化剂用 于 CO2 加 氢 制 烯 烃 的 研 究 [ D ] . 厦 门: 厦 门 大 学,2020.
YIN H R. Study on alkali metal and transition metal modified Fe based catalysts for CO2 hydrogenation to olefins[D] . Xiamen:Xiamen University,2020.
[7] 贺德华,朱起明,徐强,等. Cu-Fe 混合氧化物催化 剂上碱金属 Na 对 CO2 加氢反应的影响[ J] . 天然 气化工, 1997, 22(6) :1-5.
HE D H, ZHU Q M, XU Q, et al. Effect of Na in a Cu Fe mixed oxide catalyst on CO2 hydrogenation[ J] . Natural gas chemical industry, 1997, 22(6) : 1-5.
[8] DORNER R W,HARDY D R,WILLIAMS F W,et al. K and Mn doped iron-based CO2 hydrogenation catalysts:detection of KAlH4 as part of the catalyst′s active phase[ J ] . Applied catalysis A: general, 2010, 373 (1 / 2) :112-121.
[9] ZHANG C,CAO C X,ZHANG Y L, et al. Unraveling the role of zinc on bimetallic Fe5C2 -ZnO catalysts for highly selective carbon dioxide hydrogenation to high carbon α-olefins [ J ] . ACS catalysis, 2021, 11 ( 4 ) : 2121-2133.
[10] HAN Y,FANG C Y,JI X W,et al. Interfacing with carbonaceous potassium promoters boosts catalytic CO2 hydrogenation of iron [ J ] . ACS catalysis, 2020, 10 (20) : 12098-12108.
[11] YANG S,CHUN H J,LEE S,et al. Comparative study of olefin production from CO and CO2 using Na-and K-promoted zinc ferrite [ J] . ACS catalysis, 2020, 10 (18) : 10742-10759.
[12] RAMIREZ A,GEVERS L,BAVYKINA A,et al. Metal organic framework-derived iron catalysts for the direct hydrogenation of CO2 to short chain olefins [ J] . ACS catalysis,2018,8(10) :9174-9182.
[13] YAMASHITA T,HAYES P. Analysis of XPS spectra of Fe 2+ and Fe 3+ ions in oxide materials[ J] . Applied surface science,2008,254(8) :2441-2449.
[14] TIAN H L,FAN H Q,MA J W,et al. Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing[ J] . Journal of hazardous materials,2018,341:102 -111.
[15] MA L T,FAN H Q,FU K,et al. Protonation of graphitic carbon nitride ( g-C3N4 ) for an electrostatically selfassembling carbon @ g-C3N4 core-shell nanostructure toward high hydrogen evolution [ J ] . ACS sustainable chemistry & engineering,2017,5(8) :7093-7103.
[16] FANG J W, FAN H Q, LI M M, et al. Nitrogen selfdoped graphitic carbon nitride as efficient visible light photocatalyst for hydrogen evolution [ J ] . Journal of materials chemistry A,2015,3(26) :13819-13826.
[17] ZHAI P,XU C,GAO R,et al. Highly tunable selectivity for syngas-derived alkenes over zinc and sodiummodulated Fe5C2 catalyst[ J] . Angewandte Chemie international edition,2016,55(34) :9902-9907.
[18] NIE X W,WANG H Z,JANIK M J,et al. Mechanistic insight into C-C coupling over Fe-Cu bimetallic catalysts in CO2 hydrogenation[ J] . The journal of physical chemistry C,2017,121(24) :13164-13174.