[1] CORTES C,VAPNIK V. Support-vector networks[J]. Machine learning,1995,20( 3) : 273-297.
[2] MELLO A R,STEMMER M R,KOERICH A L.Incremental and decremental fuzzy bounded twin support vector machine[J].Information sciences,2020,526: 20 -38.
[3] 孙国栋,江亚杰,徐亮,等.BP 网络预测阈值的仪表 重影字符识别方法研究[J].郑州大学学报( 工学 版) ,2020,41( 4) : 28-33.
[4] FUNG G,MANGASARIAN O L. Proximal support vector machine classifiers[C]/ /Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining-KDD’ 01. New York: ACM,2001: 77-86.
[5] MANGASARIAN O L,WILD E W. Multisurface proximal support vector machine classification via generalized eigenvalues[J].IEEE transactions on pattern analysis and machine intelligence,2006,28 ( 1) : 69 -74.
[6] JAYADEVA,KHEMCHANDANI R,CHANDRA S. Twin support vector machines for pattern classification [J].IEEE transactions on pattern analysis and machine intelligence,2007,29( 5) : 905-910.
[7] CHEN W J,SHAO Y H,LI C N,et al. Ν-projection twin support vector machine for pattern classification [J].Neurocomputing,2020,376: 10-24.
[8] ZHANG X S,GAO X B,WANG Y.Twin support tensor machines for MCs detection[J].Journal of electronics ( China) ,2009,26( 3) : 318-325.
[9] PENG X J.TSVR: an efficient Twin Support Vector Machine for regression[J]. Neural networks,2010,23 ( 3) : 365-372.
[10] LI Y M,SUN H J,YAN W Z,et al.Multi-output parameter-insensitive kernel twin SVR model[J].Neural networks,2020,121: 276-293.
[11] 黄文锋,徐珊珊,孙燚,等.基于多分辨率卷积神经 网络 的 火 焰 检 测[J]. 郑 州 大 学 学 报 ( 工 学 版) , 2019,40( 5) : 79-83.
[12] LPEZ J,MALDONADO S.Robust twin support vector regression via second-order cone programming[J]. Knowledge-based systems,2018,152: 83-93.
[13] HAO P Y. New support vector algorithms with parametric insensitive /margin model[J]. Neural networks,2010,23( 1) : 60-73.
[14] PENG X J.Efficient twin parametric insensitive support vector regression model[J].Neurocomputing,2012,79: 26-38.
[15] 丁世飞,黄华娟.最小二乘孪生参数化不敏感支持 向量回 归 机[J]. 软 件 学 报,2017,28 ( 12) : 3146 -3155.
[16] 丁世飞,黄华娟,史忠植.加权光滑 CHKS 孪生支持 向量机[J].软件学报,2013,24( 11) : 2548-2557.
[17] 黄华娟,丁世飞,史忠植.光滑 CHKS 孪生支持向量 回归机[J].计算机研究与发展,2015,52 ( 3) : 561 -568.
[18] 王震.基于非平行超平面支持向量机的分类问题研 究[D].长春: 吉林大学,2014.
[19] 黄华娟.孪生支持向量机关键问题的研究[D].徐 州: 中国矿业大学,2014.