[1]郑建兴,郭彤彤,申利华,等.基于评论文本情感注意力的推荐方法研究[J].郑州大学学报(工学版),2022,43(02):44-50.[doi:10.13705/j.issn.1671-6833.2022.02.007]
 ZHENG Jianxing,GUO Tongtong,SHEN Lihua,et al.Research on Recommendation Method Based on Sentimental Attention of Review Text[J].Journal of Zhengzhou University (Engineering Science),2022,43(02):44-50.[doi:10.13705/j.issn.1671-6833.2022.02.007]
点击复制

基于评论文本情感注意力的推荐方法研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
43
期数:
2022年02期
页码:
44-50
栏目:
出版日期:
2022-02-27

文章信息/Info

Title:
Research on Recommendation Method Based on Sentimental Attention of Review Text
作者:
郑建兴1郭彤彤1申利华2李德玉1
1.山西大学计算机与信息技术学院;2.山西省信息产业技术研究院有限公司;

Author(s):
ZHENG Jianxing1 GUO Tongtong1 SHEN Lihua2 LI Deyu1
1.College of Computer and Information Technology, Shanxi University, Taiyuan 030006, China; 
2.Shanxi Information Industry Technology Research Institute Co., Ltd., Taiyuan 030012, China
关键词:
Keywords:
review text sentimental features attention mechanism recommendation
分类号:
TP301
DOI:
10.13705/j.issn.1671-6833.2022.02.007
文献标志码:
A
摘要:
基于评论文本的深度学习推荐主要利用评论文本刻画用户和项目的特征信息,建模用户对项目的评分关系。已有方法在提高推荐系统可解释性的同时,忽略了情感特征在评分预测中的贡献。本文考虑了评论文本以及情感极性分别在用户和项目嵌入表示中的作用,提出了一种基于评论文本情感注意力的推荐方法(IncorRAS-Rec)。首先,通过CNN对用户和项目的评论文本进行评论特征表示,同时结合了用户对项目的评分偏好,建模用户和项目的评论情感特征表示;其次,基于注意力机制为用户和项目聚合了相关的评论情感特征信息,学习用户和项目的嵌入表示;最后,结合偏置信息,预测了用户对项目的评分。在亚马逊公开数据集上进行了实验,并验证方法的有效性。实验表明,IncorRAS-Rec在RMSE、MAE指标上的性能要优于其他传统方法。
Abstract:
Recommendation methods of deep learning-based on review text mainly means to describe the feature information of users and items by terms of review texts, by rating relationship between users and items to improve the recommendation performance. Existing studies ignore the interpretable contribution of sentimental features on the rating prediction. To solve this problem, by incorporating the roles of review text and sentimental polarity orientation in the embeddings of users and items, respectively, a sentimental attention recommendation method was proposed based on review text (IncorRAS-Rec); Firstly, CNN (convolutional neural network) was used to handle review sets for users and items, represent the review features of users and items, and obtain relevant users features and items features; Then, by combining users′ rating preference for items, users and items embedding with reviews′ sentimental features were learned. Secondly, by aggregating reviews′ relevant sentimental feature information for users and items in terms of attention mechanism, the embeddings of users and items were learned; Finally, the users ratings on the items were predicted based on users and items embeddings together with their bias information. The experimental comparison and analysis were carried out on public Amazon datasets, to evaluates the effectiveness of the model performance. Experimental results showed that the proposed IncorRAS-Rec model not only could outperform other traditional methods in terms of RMSE(Root mean square error) and MAE(Mean absolute error) metrics, but also implement the explanatory role of sentimental features in rating prediction.

参考文献/References:

[1] KOREN Y,BELL R,VOLINSKY C.Matrix factorization techniques for recommender systems[J]. Computer, 2009,42( 8) : 30-37. 

[2] 柴玉梅,员武莲,王黎明,等. 基于双注意力机制和 迁移学 习 的 跨 领 域 推 荐模 型[J]. 计 算 机 学 报, 2020,43( 10) : 1924-1942.
 [3] ZHENG L,NOROOZI V,YU P S.Joint deep modeling of users and items using reviews for recommendation [C]/ /Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. Cambridge United Kingdom. New York: ACM,2017: 425-434. 
[4] CHEN C,ZHANG M,LIU Y Q,et al.Neural attentional rating regression with review-level explanations[C]/ / Proceedings of the 2018 World Wide Web Conference on World Wide Web. New York: ACM,2018: 1583 -1592. 
[5] 李勇,金庆雨,张青川.融合位置注意力机制和改进 BLSTM 的食品评论情感分析[J].郑州大学学报( 工 学版) ,2020,41( 1) : 58-62.
 [6] FAN W Q,MA Y,LI Q,et al.Graph neural networks for social recommendation[C]/ /The World Wide Web Conference.New York: ACM,2019: 417-426.
 [7] RENDLE S. Factorization machines[C]/ /2010 IEEE International Conference on Data Mining. Piscataway: IEEE,2010: 995-1000.
 [8] HE X N,CHUA T S.Neural factorization machines for sparse predictive analytics[C]/ /Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York: ACM,2017: 355-364.
 [9] XIN X,CHEN B,HE X N,et al.CFM: convolutional factorization machines for context-aware recommendation [C]/ /Proceedings of the 28th International Joint Conference on Artificial Intelligence( IJCAI 2019) .New York: ACM,2019: 3926-3932. 
[10] GUO W,ZHANG C,GUO H F,et al.Multi-branch convolutional network for context-aware recommendation[C]/ / Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York: ACM,2020: 1709-1712. 
[11] WU L B,QUAN C,LI C L,et al.A context-aware useritem representation learning for item recommendation [J].ACM transactions on information systems,2019, 37( 2) : 1-29. 
[12] CHIN J Y,ZHAO K Q,JOTY S,et al. ANR: aspectbased neural recommender[C]/ /Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM,2018: 147 -156. 
[13] TAY Y,LUU A T,HUI S C.Multi-pointer co-attention networks for recommendation[C]/ /Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York: ACM, 2018: 2309-2318. 
[14] 冯兴杰,曾云泽.基于评分矩阵与评论文本的深度 推荐模型[J].计算机学报,2020,43( 5) : 884-900. 
[15] MNIH A,SALAKHUTDINOV R. Probabilistic matrix factorization [ C ]/ /Proceedings of the 20th International Conference on Neural Information Processing Systems. New York: ACM,2007: 1257-1264. 
[16] SALAKHUTDINOV R,MNIH A.Bayesian probabilistic matrix factorization using Markov chain Monte Carlo [C ]/ /Proceedings of the 25th International Conference On Machine Learning. New York: ACM, 2008: 880-887. 
[17] KOREN Y. Factorization meets the neighborhood: a multifaceted collaborative filtering model[C]/ /Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York: ACM,2008: 426-434.

更新日期/Last Update: 2022-02-25