[1] 雷柯楠, 张玉清, 吴晨思, 等. 基于漏洞类型的漏 洞可利用 性 量 化 评 估 系 统 [ J] . 计 算 机 研 究 与 发 展, 2017, 54(10) : 2296-2309.
LEI K N, ZHANG Y Q, WU C S, et al. A system for scoring the exploitability of vulnerability based types [ J] . Journal of computer research and development, 2017, 54(10) : 2296-2309.
[2] 王东. 基于模糊测试的 IoT 设备漏洞挖掘方法研究 [D] . 成都: 电子科技大学, 2020.
WANG D. Research on fuzzing-based vulnerability discovery technique for IoT devices[D] . Chengdu: University of Electronic Science and Technology of China, 2020.
[3] 张兵, 宁多彪, 赵跃龙. 基于系统调用的 0day 攻击 路径检测系统[ J] . 计算机工程与设计, 2015, 36 (5) : 1176-1180.
ZHANG B, NING D B, ZHAO Y L. System call based 0day attack path detecting system[ J] . Computer engineering and design, 2015, 36(5) : 1176-1180.
[4] 刘泽宇. 网络安全信息预警制度性成因和建设路 径相关性要素的实证研究[ J] . 网络安全技术与应 用, 2020(3) : 10-15.
LIU Z Y. An empirical study on the institutional causes of cybersecurity information early warning and the correlation elements of construction paths[ J] . Network security technology & application, 2020(3) : 10-15.
[5] BULLOUGH B L, YANCHENKO A K, SMITH C L, et al. Predicting exploitation of disclosed software vulnerabilities using open-source data [ C] ∥Proceedings of the 3rd ACM on International Workshop on Security and Privacy Analytics. New York: ACM,2017:45-53.
[6] 陈钧衍, 陶非凡, 张源. 基于序列标注的漏洞信息 结构化抽取方法 [ J] . 计 算 机 应 用 与 软 件, 2020, 37(2) : 266-271, 276.
CHEN J Y, TAO F F, ZHANG Y. Structured extraction method for vulnerability information based on sequence labeling [ J] . Computer applications and software, 2020, 37(2) : 266-271, 276.
[7] PAN Q J, TANG W L, YAO S Y. The application of LightGBM in microsoft malware detection[J]. Journal of physics: conference series, 2020, 1684(1): 012041.
[8] 徐国天, 沈耀童. 基于 XGBoost 和 LightGBM 双层 模型的恶 意 软 件 检 测 方 法 [ J ] . 信 息 网 络 安 全, 2020, 20(12) : 54-63.
XU G T, SHEN Y T. A malware detection method based on XGBoost and LightGBM two-layer model[ J] . Netinfo security, 2020, 20(12) : 54-63.
[9] 王炎, 刘嘉勇, 刘亮, 等. 漏洞利用工具研发框架 研究[ J] . 计算机工程, 2018, 44(3) : 127-131.
WANG Y, LIU J Y, LIU L, et al. Research on vulnerability utilization tool development framework [ J] . Computer engineering, 2018, 44(3) : 127-131.
[10] 张必彦, 王孟. 基于 CVSS 漏洞评分标准的网络攻 防量化方法研究 [ J] . 兵 器 装 备 工 程 学 报, 2018, 39(4) : 147-150.
ZHANG B Y, WANG M. Research on quantization method of network attack and defense based on CVSS vulnerability score[ J] . Journal of ordnance equipment engineering, 2018, 39(4) : 147-150.
[11] KERAMATI M, AKBARI A. CVSS-based security metrics for quantitative analysis of attack graphs[C] / / 3th International Conference on Computer and Knowledge Engineering ( ICCKE ) . Piscataway: IEEE, 2013:178-183.
[12] 徐伟华. 基 于 CVSS 的 漏 洞 风 险 评 估 方 法 研 究 [D] . 天津: 中国民航大学, 2017. XU W H. Research on vulnerability risk assessment method based on CVSS [ D] . Tianjin: Civil Aviation University of China, 2017.
[13] 彭成, 展万里, 周晓红. 基于随机森林的异常邮件 检测方 法 研 究 与 实 现 [ J] . 湖 南 工 业 大 学 学 报, 2020, 34(1) : 70-76.
PENG C, ZHAN W L, ZHOU X H. Research and implementation of abnormal mail detection method based on random forest algorithm[ J] . Journal of Hunan university of technology, 2020, 34(1) : 70-76.
[14] 陈晓楠, 胡建敏, 陈茜, 等. 基于 LightGBM 算法的 网络战仿真与效能评 估 [ J] . 计 算 机 应 用, 2020, 40(7) : 2003-2008.
CHEN X N, HU J M, CHEN X, et al. Simulation and effectiveness evaluation of network warfare based on LightGBM algorithm[ J] . Journal of computer applications, 2020, 40(7) : 2003-2008.
[15] LI Z J, SHAO Y. A survey of feature selection for vulnerability prediction using feature-based machine learning [ C ] ∥Proceedings of the 11th International Conference on Machine Learning and Computing. New York: ACM, 2019: 36-42.
[16] KAYA A, KECELI A S, CATAL C, et al. The impact of feature types, classifiers, and data balancing techniques on software vulnerability prediction models[ J] . Journal of software: evolution and process, 2019, 31 (9) : e2164.
[17] 南东亮, 王维庆, 王海云. 基于消息队列的 LightGBM 超参数优化[ J] . 计算机工程与科学, 2019, 41 (8) : 1360-1365.
NAN D L, WANG W Q, WANG H Y. Optimization of LightGBM hyper-parameters based on message queuing [ J] . Computer engineering & science, 2019, 41(8) : 1360-1365.
[18] 张蕾, 崔勇, 刘静, 等. 机器学习在网络空间安全 研究中 的 应 用 [ J] . 计 算 机 学 报, 2018, 41 ( 9) : 1943-1975.
ZHANG L, CUI Y, LIU J, et al. Application of machine learning in cyberspace security research [ J ] . Chinese journal of computers, 2018, 41 ( 9 ) : 1943-1975.
[19] 刘绍廷, 杨孟英, 朱广全, 等. 机器学习在 SQL 注 入攻击 检 测 中 的 应 用 [ J ] . 河 南 科 技, 2021, 40 (8) : 23-27.
LIU S T, YANG M Y, ZHU G Q, et al. Application of machine learning in SQL injection attack detection [ J] . Henan science and technology, 2021, 40 ( 8) : 23-27.