[1]刘德平,郑 凯,李冬梅.氧合器内部流场特性分析与溶血评估[J].郑州大学学报(工学版),2022,43(05):39-45.[doi:10.13705/j.issn.1671-6833.2022.05.006]
 LIU Deping,ZHENG Kai,LI Dongmei.Analysis of Flow Field Characteristics and Hemolysis Evaluation in Oxygenator[J].Journal of Zhengzhou University (Engineering Science),2022,43(05):39-45.[doi:10.13705/j.issn.1671-6833.2022.05.006]
点击复制

氧合器内部流场特性分析与溶血评估()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
43
期数:
2022年05期
页码:
39-45
栏目:
出版日期:
2022-08-22

文章信息/Info

Title:
Analysis of Flow Field Characteristics and Hemolysis Evaluation in Oxygenator
作者:
刘德平1 郑 凯1 李冬梅2
1.郑州大学机械与动力工程学院;2.广东顺德工业设计研究院;

Author(s):
LIU Deping1 ZHENG Kai1 LI Dongmei2
1.School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China; 
2.Guangdong Shunde Innovation Design Institute, Foshan 528300, China
关键词:
Keywords:
oxygenator porous media microscale computational fluid dynamics hemolysis
分类号:
N945;TH789
DOI:
10.13705/j.issn.1671-6833.2022.05.006
文献标志码:
A
摘要:
氧合器内部流体运动特性对其性能有着重要影响,实际中却难以通过实验直接观察其内部血液流动特性。 为了解氧合器内部流体运动特性以预测其性能,针对一款典型氧合器,采用压降实验与CFD 数值模拟相结合的方法,详细分析了该氧合器内部整体血液速度、压力和壁面剪切应力等特性分布规律,利用溶血预估模型评估了氧合器溶血性能。 研究结果表明:在低流量范围内,各向同性多孔介质模型能够很好地模拟血液在氧合器纤维束内的流动,数值模拟计算值与实验值相差较小,但随着流量增加,两者偏差逐渐增大;氧合器内部速度呈梯度分布形式,内部纤维束域的压力呈同心均匀分布并且压力值与流量大小呈正相关,纤维束域是压力损失的主要区域;血液损伤高发位置分布于血液的进、出口流域,在实验流量范围内,标准溶血指数 NIH 最大值为 0. 049 2 g / 100 L,符合氧合器的一般设计要求。研究结果有利于开发者了解氧合器内部流体运动特性对其性能的影响,为氧合器后续的性能改善提供参考。
Abstract:
Fluid motion in oxygenator has an important influence on its performance, but it is difficult to observe its internal hemodynamics directly. In order to understand the fluid movement characteristics in an oxygenator and predict its performance, this study analyzed the distribution of blood velocity, pressure and wall shear stress in a typical oxygenator through pressure drop experiment and CFD numerical simulation. The hemolysis performance of the oxygenator was evaluated by the hemolysis prediction model. The research results indicated that in the low flow range, the simulated value of the isotropic porous media model was the same as the experimental value,and the model could well simulate the flow of blood in the oxygenator fiber bundle,but with the increase of flow,the deviation increases gradually; the internal velocity of the compound oxygenator was in a gradient form; the internal pressure was concentric and uniform, and the pressure value was positively correlated with the flow rate. The porous medium area was the main area of pressure loss,accounting for 87% of the overall pressure drop; the high incidence of blood damage was located at the blood inlet and outlet. Under the experimental flow, the standard hemolysis index NIH was 0.049 2 g/100 L, which conformed to the general design requirements of oxygenator. The results were helpful for researchers to understand the influence of fluid motion characteristics on the performance of oxygenator, and could provide a reference for further performance improvement of oxygenator.

参考文献/References:

[1] D′ONOFRIO C, VAN LOON R, ROLLAND S, et al. Three-dimensional computational model of a blood oxygenator reconstructed from micro-CT scans[ J] . Medical engineering & physics, 2017, 47: 190-197. 

[2] SCHLANSTEIN P C, HESSELMANN F, JANSEN S V, et al. Particle image velocimetry used to qualitatively validate computational fluid dynamic simulations in an oxygenator: a proof of concept[ J] . Cardiovascular engineering and technology, 2015, 6 ( 3 ) : 340 -351.
 [3] CONSOLO F, FIORE G B, PELOSI A, et al. A numerical performance assessment of a commercial cardiopulmonary by-pass blood heat exchanger[ J] . Medical engineering & physics, 2015, 37(6) : 584-592.
 [4] KIRSCH V A, ROLDUGIN V I, BILDYUKEVICH A V, et al. Simulation of convective-diffusional processes in hollow fiber membrane contactors [ J ]. Separation and purification technology, 2016, 167: 63-69. 
[5] WICKRAMASINGHE S R, GARCIA J D, HAN B B. Mass and momentum transfer in hollow fibre blood oxygenators [ J ] . Journal of membrane science, 2002, 208(1 / 2) : 247-256.
 [6] TASKIN M E, FRASER K H, ZHANG T, et al. Micro-scale modeling of flow and oxygen transfer in hollow-fiber membrane bundle[ J] . Journal of membrane science, 2010, 362(1 / 2) : 172-183. 
[7] ZHANG J F, CHEN X B, DING J, et al. Computational study of the blood flow in three types of 3D hollow fiber membrane bundles [ J ] . Journal of biomechanical engineering, 2013, 135(12) : 121009. 
[8] JONES C C, MCDONOUGH J M, CAPASSO P, et al. Improved computational fluid dynamic simulations of blood flow in membrane oxygenators from X-ray imaging[ J] . Annals of biomedical engineering, 2013, 41 (10) : 2088-2098.
 [9] GAGE K L, GARTNER M J, BURGREEN G W, et al. Predicting membrane oxygenator pressure drop using computational fluid dynamics [ J ] . Artificial organs, 2002, 26(7) : 600-607. 
[10] 曹海亮, 王定标, 魏新利. 多孔介质微燃烧器预混 燃烧的数 值 研 究 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2011, 32(2) : 1-5. 
CAO H L, WANG D B, WEI X L. Numerical investigation into premixed combustion of the micro porous media combustor[ J] . Journal of Zhengzhou university ( engineering science) , 2011, 32(2) : 1-5. 
[11] PELOSI A, SHERIFF J, STEVANELLA M, et al. Computational evaluation of the thrombogenic potential of a hollow-fiber oxygenator with integrated heat exchanger during extracorporeal circulation [ J] . Biomechanics and modeling in mechanobiology, 2014, 13 (2) : 349-361.
 [12] 寿宸, 郭勇君, 苏磊, 等. 基于快速溶血预估模型 的离心血泵叶轮特性数值分析[ J] . 生物医学工程 学杂志, 2014, 31(6) : 1260-1264. 
SHOU C, GUO Y J, SU L, et al. Numerical assessment of impeller features of centrifugal blood pump based on fast hemolysis approximation model [ J ] . Journal of biomedical engineering, 2014, 31 ( 6 ) : 1260-1264. 
[13] GARON A, FARINAS M I. Fast three-dimensional numerical hemolysis approximation [ J] . Artificial organs, 2004, 28(11) : 1016-1025.
 [14] GIERSIEPEN M, WURZINGER L J, OPITZ R, et al. Estimation of shear stress-related blood damage in heart valve prostheses: in vitro comparison of 25 aortic valves [ J ] . The International journal of artificial organs, 1990, 13(5) : 300-306.
 [15] 叶非华, 廖虎, 易国斌. 基于多孔介质模型的膜式 氧合器 内 部 流 场 分 析 [ J ] . 化 工 进 展, 2020, 39 (3) : 898-905. 
YE F H, LIAO H, YI G B. Internal flow field analysis of membrane oxygenator based on porous media model [ J ] . Chemical industry and engineering progress, 2020, 39(3) : 898-905. 
[16] 武悦, 朱良凡, 罗云. 计算流体力学方法分析一例 喷射悬浮血泵的液力、悬浮及溶血特性[ J] . 机械 工程学报, 2018, 54(20) : 52-58. 
WU Y, ZHU L F, LUO Y. Computational fluid dynamics analysis of an injection suspension blood pump on the hydraulic, suspension and hemolysis property [ J ] . Journal of mechanical engineering, 2018, 54 (20) : 52-58.

相似文献/References:

[1]潘健,蔡红超..可变形多孔介质溶质运移的参数影响分析[J].郑州大学学报(工学版),2009,30(04):136.
 PAN Jian,CAI Hongchao.Parameter Influence Analysis of Solute Transport in Deformable Porours Media[J].Journal of Zhengzhou University (Engineering Science),2009,30(05):136.

更新日期/Last Update: 2022-08-20