[1] D′ONOFRIO C, VAN LOON R, ROLLAND S, et al. Three-dimensional computational model of a blood oxygenator reconstructed from micro-CT scans[ J] . Medical engineering & physics, 2017, 47: 190-197.
[2] SCHLANSTEIN P C, HESSELMANN F, JANSEN S V, et al. Particle image velocimetry used to qualitatively validate computational fluid dynamic simulations in an oxygenator: a proof of concept[ J] . Cardiovascular engineering and technology, 2015, 6 ( 3 ) : 340 -351.
[3] CONSOLO F, FIORE G B, PELOSI A, et al. A numerical performance assessment of a commercial cardiopulmonary by-pass blood heat exchanger[ J] . Medical engineering & physics, 2015, 37(6) : 584-592.
[4] KIRSCH V A, ROLDUGIN V I, BILDYUKEVICH A V, et al. Simulation of convective-diffusional processes in hollow fiber membrane contactors [ J ]. Separation and purification technology, 2016, 167: 63-69.
[5] WICKRAMASINGHE S R, GARCIA J D, HAN B B. Mass and momentum transfer in hollow fibre blood oxygenators [ J ] . Journal of membrane science, 2002, 208(1 / 2) : 247-256.
[6] TASKIN M E, FRASER K H, ZHANG T, et al. Micro-scale modeling of flow and oxygen transfer in hollow-fiber membrane bundle[ J] . Journal of membrane science, 2010, 362(1 / 2) : 172-183.
[7] ZHANG J F, CHEN X B, DING J, et al. Computational study of the blood flow in three types of 3D hollow fiber membrane bundles [ J ] . Journal of biomechanical engineering, 2013, 135(12) : 121009.
[8] JONES C C, MCDONOUGH J M, CAPASSO P, et al. Improved computational fluid dynamic simulations of blood flow in membrane oxygenators from X-ray imaging[ J] . Annals of biomedical engineering, 2013, 41 (10) : 2088-2098.
[9] GAGE K L, GARTNER M J, BURGREEN G W, et al. Predicting membrane oxygenator pressure drop using computational fluid dynamics [ J ] . Artificial organs, 2002, 26(7) : 600-607.
[10] 曹海亮, 王定标, 魏新利. 多孔介质微燃烧器预混 燃烧的数 值 研 究 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2011, 32(2) : 1-5.
CAO H L, WANG D B, WEI X L. Numerical investigation into premixed combustion of the micro porous media combustor[ J] . Journal of Zhengzhou university ( engineering science) , 2011, 32(2) : 1-5.
[11] PELOSI A, SHERIFF J, STEVANELLA M, et al. Computational evaluation of the thrombogenic potential of a hollow-fiber oxygenator with integrated heat exchanger during extracorporeal circulation [ J] . Biomechanics and modeling in mechanobiology, 2014, 13 (2) : 349-361.
[12] 寿宸, 郭勇君, 苏磊, 等. 基于快速溶血预估模型 的离心血泵叶轮特性数值分析[ J] . 生物医学工程 学杂志, 2014, 31(6) : 1260-1264.
SHOU C, GUO Y J, SU L, et al. Numerical assessment of impeller features of centrifugal blood pump based on fast hemolysis approximation model [ J ] . Journal of biomedical engineering, 2014, 31 ( 6 ) : 1260-1264.
[13] GARON A, FARINAS M I. Fast three-dimensional numerical hemolysis approximation [ J] . Artificial organs, 2004, 28(11) : 1016-1025.
[14] GIERSIEPEN M, WURZINGER L J, OPITZ R, et al. Estimation of shear stress-related blood damage in heart valve prostheses: in vitro comparison of 25 aortic valves [ J ] . The International journal of artificial organs, 1990, 13(5) : 300-306.
[15] 叶非华, 廖虎, 易国斌. 基于多孔介质模型的膜式 氧合器 内 部 流 场 分 析 [ J ] . 化 工 进 展, 2020, 39 (3) : 898-905.
YE F H, LIAO H, YI G B. Internal flow field analysis of membrane oxygenator based on porous media model [ J ] . Chemical industry and engineering progress, 2020, 39(3) : 898-905.
[16] 武悦, 朱良凡, 罗云. 计算流体力学方法分析一例 喷射悬浮血泵的液力、悬浮及溶血特性[ J] . 机械 工程学报, 2018, 54(20) : 52-58.
WU Y, ZHU L F, LUO Y. Computational fluid dynamics analysis of an injection suspension blood pump on the hydraulic, suspension and hemolysis property [ J ] . Journal of mechanical engineering, 2018, 54 (20) : 52-58.