[1] GUTTMAN A. R-trees: a dynamic index structure for spatial searching [ J] . Acm sigmod record, 1984, 14 (2) :47-57. [2] XU H, LIU N, TAI W P, et al. Range queries in spatial index research based on the spark[C]∥2017 2nd IEEE International Conference on Computational Intelligence and Applications. Piscataway:IEEE, 2017: 46-50.
[3] XIAO J T, ZHANG Y C, JIA X H. Clustering nonuniform-sized spatial objects to reduce I / O cost for spatial-join processing [ J ] . The computer journal, 2001, 44(5) : 384-397.
[4] JAGADISH H V. Spatial search with polyhedra[ C]∥ Proceedings of Sixth International Conference on Data Engineering of Piscataway:IEEE, 1990: 311-319.
[5] DANKO O, SKOPAL T. Elliptic indexing of multidimensional databases[C]∥Proceedings of the Twentieth Australasian Conference on Australasian Database. Wellington: Australian Computer Society, 2009: 85 -94.
[6] SIDLAUSKAS D, CHESTER S, ZACHARATOU E T, et al. Improving spatial data processing by clipping minimum bounding boxes[C]∥2018 IEEE 34th International Conference on Data Engineering. Piscataway: IEEE, 2018: 425-436.
[7] LANGENDOEN K, GLASBERGEN B, DAUDJEE K. NIR-tree: a non-intersecting R-tree[C]∥33rd International Conference on Scientific and Statistical Database Management. New York: ACM, 2021: 157-168.
[8] EVAGOROU G, HEINIS T. MAMBO-indexing dead space to accelerate spatial queries [ C]∥33rd International Conference on Scientific and Statistical Database Management. New York: ACM, 2021: 73-84.
[9] MAHMOOD A R, PUNNI S, AREF W G. Spatiotemporal access methods: a survey ( 2010—2017 ) [ J] . GeoInformatica, 2019, 23(1) : 1-36.
[10] SON W, STEHN F, KNAUER C, et al. Top-k manhattan spatial skyline queries[ J] . Information processing letters, 2017, 123: 27-35.
[11] BECKMANN N, SEEGER B. A benchmark for multidimensional index structures[ EB / OL] . ( 2008 - 03 - 29) [ 2020 - 11 - 15] . http:∥www. mathematik. unimarburg. de / ~ seeger / rrstar / .