[1]王建明,李钊全,李博志.基于光滑-扩展有限元法的裂纹扩展研究[J].郑州大学学报(工学版),2022,43(02):51-57.[doi:10.13705/j.issn.1671-6833.2022.02.014]
 WANG Jianming,LI Zhaoquan,LI Bozhi.Research on Crack Propagation Based on Smooth-extended Finite Element Method[J].Journal of Zhengzhou University (Engineering Science),2022,43(02):51-57.[doi:10.13705/j.issn.1671-6833.2022.02.014]
点击复制

基于光滑-扩展有限元法的裂纹扩展研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
43
期数:
2022年02期
页码:
51-57
栏目:
出版日期:
2022-02-27

文章信息/Info

Title:
Research on Crack Propagation Based on Smooth-extended Finite Element Method
作者:
王建明李钊全李博志
山东大学机械工程学院;

Author(s):
WANG Jianming LI Zhaoquan LI Bozhi
School of Mechanical Engineering, Shandong University, Jinan 250061, China
关键词:
Keywords:
smooth-extended finite element method stress intensity factor crack propagation numerical simulation MATLAB programming
分类号:
O346.1
DOI:
10.13705/j.issn.1671-6833.2022.02.014
文献标志码:
A
摘要:
本文将光滑有限元法与扩展有限元法相结合,形成光滑-扩展有限元法,用于研究裂纹扩展问题。首先基于光滑-扩展有限元法理论形成裂纹应力强度因子计算方法,通过典型案例计算I型、II型以及I型、II型复合裂纹的应力强度因子。在此基础上通过引入裂纹扩展判据,结合典型算例进行裂纹扩展路径研究。结果表明,该算法对于计算I型、II型以及I型、II型复合裂纹的应力强度因子具有良好的适应性。在进行裂纹扩展路径模拟时,不需要对裂纹附近区域的网格进行重划分或加密,使得分析过程更加简单,计算效率明显提高,提高了计算速度,消除了网格重划分对裂纹扩展路径的限制。
Abstract:
In order to study the crack propagation problem, the smooth finite element method (S-FEM) was combined with the extended finite element method (X-FEM) to form the smooth-extended finite element method (S-XFEM) algorithm and program.Firstly, based on the theory of S-XFEM, the calculation method of crack stress intensity factor was formed, and the general program suitable for general finite element method was written to analyze the unidirectional tensile model of an infinite plate with a central crack. By changing the mesh size and crack angle to analyze the influence of crack stress intensity factor, the stress intensity factor values of type I, type II and type I, II composite cracks obtained by the algorithm were compared with the theoretical values. With the decrease of mesh size, the stress intensity factor values of type I and type II obtained by S-XFEM approached to the exact solution continuously. With the increase of crack degree, the stress intensity factor value of type I increased continuously, and the stress intensity factor of type II increased first and then decreased with the angle.The larger the angle was, the closer the crack was to the type I crack. Therefore, the stress intensity factor calculated by the S-XFEM had high accuracy and good adaptability.Secondly, on this basis, the crack propagation criterion was introduced, and the MATLAB programming was used to study the crack propagation path of four-point bending experimental model of the plate with side cracks and the beam with holes. The results showed that the crack propagation path obtained by this example was consistent with that obtained by references.Finally, in this paper, S-XFEM was used to study the crack propagation,compared to using other methods for crack propagation research, it was not necessary to re-divide or encrypt the grid in the area near the crack,which would make the analysis process more simple, improve the computational efficiency.

参考文献/References:

[1] 郭小斌,刘成武.光滑有限元方法研究进展[J].机电 技术,2019,42( 1) : 91-96,104. 

[2] 陈茂娟.边界光滑有限元法在各向异性介质热传导 问题中的应用[D].银川: 宁夏大学,2018. 
[3] JIANG Y,TAY T E,CHEN L,et al. An edge-based smoothed XFEM for fracture in composite materials [J].International journal of fracture,2013,179( 1 /2) : 179-199. 
[4] RODRIGUES J D,NATARAJAN S,FERREIRA A J M,et al. Analysis of composite plates through cellbased smoothed finite element and 4-noded mixed interpolation of tensorial components techniques[J]. Computers & structures,2014,135: 83-87. 
[5] 谢伟,贺旭东,吴建国,等.二维光滑边域有限元法 在弹性力学中的应用研究[J].西北工业大学学报, 2017,35( 1) : 7-12.
 [6] 朱彦兵,李 伟. 势问题的单元型光滑有限元方法 ( CS-FEM) 研 究[J]. 佳 木 斯 职 业 学 院 学 报,2017 ( 3) : 299-301. 
[7] 王建明,张刚,戚放,等.基于光滑有限元法的体积 锁定研究[J]. 山 东 大 学 学 报( 工 学 版) ,2012,42 ( 3) : 93-99. 
[8] FANTUZZI N,DIMITRI R,TORNABENE F.A SFEMbased evaluation of mode-I Stress Intensity Factor in composite structures[J]. Composite structures,2016, 145: 162-185. 
[9] LIU P,BUI T Q,ZHANG C,et al.The singular edgebased smoothed finite element method for stationary dynamic crack problems in 2D elastic solids[J].Computer methods in applied mechanics and engineering, 2012,233 /234 /235 /236: 68-80. 
[10] LI E,CHEN J N,ZHANG Z P,et al.Smoothed finite element method for analysis of multi-layered systems-Applications in biomaterials[J].Computers & structures, 2016,168: 16-29. 
[11] 贾程,陈国荣. Mindlin-Reissner 板屈曲分析的光滑 有限元法[J]. 郑 州 大 学 学 报( 工 学 版) ,2013,34 ( 5) : 38-42. 
[12] 樊现行.光滑有限元法理论及算法研究[D].济南: 山东大学,2013. 
[13] 朱琳.基于 XFEM 的加筋板结构疲劳裂纹扩展模拟 方法研究[D].大连: 大连理工大学,2021. 
[14] 张芮晨.扩展有限元法在疲劳裂纹扩展模拟中的应 用[J].科技创新与应用,2019( 18) : 11-13. 
[15] 中国航空研究院. 应力强度因子手册[M]. 北京: 科 学出版社,1981: 27-28. 
[16] NGUYEN-XUAN H,LIU G R,BORDAS S,et al.An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order[J].Computer methods in applied mechanics and engineering,2013,253: 252 -273. 
[17] MIRANDA A C O,MEGGIOLARO M A,CASTRO J T P,et al. Fatigue life and crack path predictions in generic 2D structural components[J].Engineering fracture mechanics,2003,70( 10) : 1259-1279.

相似文献/References:

[1]张蓓,李海龙,郭成超,等.沥青路面表面裂缝扩展分析[J].郑州大学学报(工学版),2010,31(02):46.
 ZHANG Bei,LI Hailong,GUO Chengchao,et al.Analysis of Surface Crack Propagation of Asphalt Pavement[J].Journal of Zhengzhou University (Engineering Science),2010,31(02):46.
[2]乐金朝,王复明,刘文廷.非对称载荷作用的Griffith裂纹问题的Fourier积分变换解法[J].郑州大学学报(工学版),1996,17(03):20.
 Le Jin Chao,Wang Fuming,Liu Wenting.Fourier integration transformation solution method of GRIFFITH cracking problem with asymmetric loading[J].Journal of Zhengzhou University (Engineering Science),1996,17(02):20.
[3]周鸿钧,段云岭.用分区混合有限元法求解界面裂缝的缝端应力强度因子[J].郑州大学学报(工学版),1992,13(01):7.
 Zhou Hongjun,Duan Yunling,Use the partition hybrid finite element method to solve the seam stress strength factor of the cracks of the interface[J].Journal of Zhengzhou University (Engineering Science),1992,13(02):7.
[4]束继兴,沈怡民,丁遂栋,等.T型管焊节点疲劳寿命的估算[J].郑州大学学报(工学版),1990,11(02):24.
 Shu Jixing,Shen Yimin,Ding Suidong,et al.Estimation of the fatigue life of the T -type tube welding node[J].Journal of Zhengzhou University (Engineering Science),1990,11(02):24.
[5]魏新利.绕丝筒体的附加断裂阻力[J].郑州大学学报(工学版),1990,11(03):40.
 Wei Xinli,Additional broken resistance of the filament tube[J].Journal of Zhengzhou University (Engineering Science),1990,11(02):40.
[6]丁遂栋.无限大板中心裂纹应力强度因子[J].郑州大学学报(工学版),1987,8(01):39.
 [J].Journal of Zhengzhou University (Engineering Science),1987,8(02):39.
[7]段云岭,周鸿钧.异弹模界面裂缝应力强度因子的计算[J].郑州大学学报(工学版),1987,8(03):14.
 [J].Journal of Zhengzhou University (Engineering Science),1987,8(02):14.

更新日期/Last Update: 2022-02-25