[1]钟 委,田 英,韩 宁,等.地下车库排烟口朝向对排烟效果的影响[J].郑州大学学报(工学版),2022,43(05):84-90.[doi:10.13705/j.issn.1671-6833.2022.05.010]
 ZHONG Wei,TIAN Ying,HAN Ning,et al.Influence of Smoke Outlet Orientation on Smoke Exhaust Effect in Underground Garage[J].Journal of Zhengzhou University (Engineering Science),2022,43(05):84-90.[doi:10.13705/j.issn.1671-6833.2022.05.010]
点击复制

地下车库排烟口朝向对排烟效果的影响()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
43
期数:
2022年05期
页码:
84-90
栏目:
出版日期:
2022-08-22

文章信息/Info

Title:
Influence of Smoke Outlet Orientation on Smoke Exhaust Effect in Underground Garage
作者:
钟 委1 田 英 1 韩 宁1 高子鹤2 章 恒1
1.郑州大学力学与安全工程学院;2.郑州大学土木工程学院;

Author(s):
ZHONG Wei1 TIAN Ying1 HAN Ning1 GAO Zihe2 ZHANG Heng1
1.School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; 
2.School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China
关键词:
Keywords:
underground garage fire mechanical exhaust smoke exhaust vent exhaust efficiency
分类号:
N39;TU962;TU926
DOI:
10.13705/j.issn.1671-6833.2022.05.010
文献标志码:
A
摘要:
为了比较开口朝向不同的 3 种排烟系统的排烟效果,以地下车库的一个防烟分区为例,建立 FDS 物理模型,对 3 种排烟系统进行数值模拟。 通过对比 3 种排烟系统的流场和温度分布以及排热量 和排烟效率,分析 3 种排烟系统的特点及排烟效果的差别。 结果表明:从流场和温度分布来看,3 种排烟系统的流场分布存在较大差异,温度分布却很相似;从排烟效率和排热量来看,排烟口向上的机械排烟 系统相对于开口向下的系统,排烟效率要高 4%左右,排热量要高 10%左右;从排烟口高度不同时的排热量变化情况来看,开口向下的排烟系统,排热量随着排烟口高度的升高明显增加,而开口向上的排烟系 统,排热量随着排烟口高度的升高变化不明显。 对于向上开口的排烟系统,排烟 口高度在 4. 5 m 以下时,随着排烟口向上高度的增加,排烟效率在逐渐增加,但是在排烟口高度超过 4. 5 m 后,由于排烟口太接近顶棚,排烟受到顶棚的干扰,排烟效率反而降低。
Abstract:
In order to examine the smoke exhaust effect of three mechanical smoke exhaust systems with different smoke outlet orientations, an FDS physical model was established by taking a smoke prevention zone of the car garage, and numerical simulations were carried out for the three smoke extraction systems. The flow field, temperature distribution, as well as the heat exhaust and smoke exhaust efficiency of the three smoke exhaust systems were compared. The characteristics of the three smoke extraction systems and the differences in the smoke exhaust effect were analyzed. The results showed that, from the perspective of flow field and temperature distribution, the flow field distribution of the three smoke extraction systems was quite different, but the temperature distribution was very similar. From the perspective of smoke exhaust efficiency and heat exhaust, the mechanical smoke exhaust system with the exhaust port upward was about 4% higher in the exhaust efficiency and about 10% higher in the heat exhaust than the system with the opening downward. From the perspective of the change of exhaust heat when the height of the exhaust port was different, for the smoke exhaust system with the downward opening, the heat exhaust increased significantly with the increase of the height of the exhaust port, while the smoke exhaust system with the upward opening, the heat exhaust increased not obviously with the increase of the height of the exhaust port. For the smoke exhaust system with the upward opening, when the height of the exhaust outlet was lower than 4.5 m, the smoke exhaust efficiency increased gradually with the increase of the upward height of the smoke exhaust outlet. However, when the height of the exhaust outlet exceeded 4.5 m, the smoke exhaust was disturbed by the ceiling due to the short distance between the smoke exhaust outlet and the ceiling, which led to the smoke exhaust efficiency reduced.

参考文献/References:

[1] 吕辰. 扁平大空间地下车库火灾烟气流动数值模 拟研究[D] . 淮南: 安徽理工大学, 2015. 

LYU C. Study on smoke spread law in flat large space of the underground parking fire[ D] . Huainan: Anhui University of Science & Technology, 2015.
 [2] 钟委, 刘欣, 高子鹤. 纵向通风对隧道火灾特性及 竖井自然排烟效果的影响[ J] . 郑州大学学报( 工 学版) , 2020, 41(6) : 46-52. 
ZHONG W, LIU X, GAO Z H. Experimental investigation on the influence of longitudinal ventilation on tunnel fire characteristics and natural smoke exhaust by shaft[ J] . Journal of Zhengzhou university ( engineering science) , 2020, 41(6) : 46-52.
 [3] GANN R G. International study of the sublethal effects of fire smoke on survivability and health ( SEFS) [R]. Los Angeles: National Bureau of Standards, 2001. 
[4] 赵猛超, 卢淼, 徐大用. 地下车辆基地排烟模式对 比研究[ J] . 建筑安全, 2017, 32(9) : 71-75. 
ZHAO M C, LU M, XU D Y. Comparative study on smoke exhaust patterns of underground vehicle bases [ J] . Construction safety, 2017, 32(9) : 71-75.
 [5] JI J, LI K Y, ZHONG W, et al. Experimental investigation on influence of smoke venting velocity and vent height on mechanical smoke exhaust efficiency [ J ] . Journal of hazardous materials, 2010, 177 ( 1 / 2 / 3) : 209-215.
 [6] 周志忠, 黄亚东, 徐亮, 等. 排烟速度对扁平空间 机械排烟 效 率 影 响 研 究 [ J ] . 消 防 科 学 与 技 术, 2019, 38(6) : 809-811. 
ZHOU Z Z, HUANG Y D, XU L, et al. Study on the effect of mechanical smoke exhaust velocity on smoke exhaust efficiency in a flat space[ J] . Fire science and technology, 2019, 38(6) : 809-811.
 [7] HSU M W, LEE S K, HUANG L L, et al. The simulation of fires in underground parking floors by fire dynamic simulator[ J] . Sensors and materials, 2017, 29 (4) : 429-443.
 [8] 张梅红, 赵伟. 扁平空间排烟口朝向对排烟效果的 影响 [ J ] . 消 防 科 学 与 技 术, 2011, 30 ( 3 ) : 211-213.
 ZHANG M H, ZHAO W. Influence of the smoke vent orientation to smoke evacuation in flat space[ J]. Fire science and technology, 2011, 30(3): 211-213. 
[9] 李英, 王艳. 某地下车库不同排烟口高度及朝向排 烟效率数值模拟研究[ J] . 安徽建筑工业学院学报 (自然科学版) , 2014, 22(3) : 78-82. 
LI Y, WANG Y. Numerical simulation on the mechanical smoke extraction efficiency under various venting heights and directions in an underground garage [ J] . Journal of Anhui institute of architecture & industry ( natural science) , 2014, 22(3) : 78-82. 
[10] 中华人民共和国住房和城乡建设部. 汽车库、修车 库、停车场设计防火规范:GB 50067—2014[ S] . 北 京:中国计划出版社,2014. 
Ministry of housing and urban rural development of the people′s Republic of China. Code for fire protection design of garage,motor repair shop and parking area: GB 50067—2014 [ S ] . Beijing: China Planning Press,2014. 
[11] 陈永宽. 地 下 车 库 火 灾 控 制 效 果 数 值 模 拟 研 究 [D] . 淮南: 安徽理工大学, 2019. 
CHEN Y K. Numerical simulation study on fire control effect of underground garage[D] . Huainan: Anhui University of Science & Technology, 2019. 
[12] 钟委, 端木维可, 李华琳, 等. 火源横向位置对隧 道火灾烟气分岔流动影响[ J] . 郑州大学学报( 工 学版) , 2017, 38(1) : 27-31. 
ZHONG W, DUANMU W K, LI H L, et al. Numerical investigation into the influence of different transverse fire locations on smoke bifurcation flow in tunnel fire[ J] . Journal of Zhengzhou university ( engineering science) , 2017, 38(1) : 27-31. 
[13] AYALA P, CANTIZANO A, GUTIÉRREZ-MONTES C, et al. Influence of atrium roof geometries on the numerical predictions of fire tests under natural ventilation conditions[ J] . Energy and buildings, 2013, 65: 382-390. 
[14] 钟委. 地铁站火灾烟气流动特性及控制方法研究 [D] . 合肥: 中国科学技术大学, 2007. 
ZHONG W. Study on smoke flow characters and management in subway station fire[ D] . Hefei: University of Science and Technology of China, 2007.
 [15] YANG J, PAN X, WANG Z, et al. Numerical study on the smoke flow characterization and phenomenon of plug-holing under lateral smoke exhaust in tunnel fire [ J ] . Journal of applied fluid mechanics, 2018, 11 (1) : 115-126.
 [16] 刘拓, 姜学鹏. 侧向集中排烟隧道火灾烟气控制优 化[ J ] . 消 防 科 学 与 技 术, 2013, 32 ( 8 ) : 837 - 840, 843. 
LIU T, JIANG X P. Optimization on smoke control in tunnel with lateral central extraction system [ J]. Fire science and technology, 2013, 32(8): 837-840, 843. 
[17] 史玉晓. 地铁站火灾烟气扩散及控制研究[D] . 西 安: 西安建筑科技大学, 2017. 
SHI Y X. Study on smoke diffusion and control of subway station fire[D] . Xi′an: Xi′an University of Architecture and Technology, 2017.
 [18] MCGRATTAN K B, MCDERMOTT R, WEINSCHENK C, et al. Fire dynamics simulator technical reference guide volume 1[R]. Gaithersburg: National Institute of Standards and Technology, 2013.
 [19] 陈建忠, 曹正卯, 张琦. 侧壁排烟模式下超宽断面 沉管隧道火灾排烟效率研究[ J] . 地下空间与工程 学报, 2017, 13(增刊 1) : 393-399. 
CHEN J Z, CAO Z M, ZHANG Q. Study on the efficiency of smoke exhausting under lateral exhaust mode in extra-wide immersed tunnel fire[ J] . Chinese journal of underground space and engineering, 2017, 13 ( S1) : 393-399.

更新日期/Last Update: 2022-08-23