[1] 袁熙, 李舜酩. 疲劳寿命预测方法的研究现状与发 展[ J] . 航空制造技术, 2005, 48(12) : 80-84. YUAN X, LI S M. Research status and development of forecast method of fatigue life [ J ] . Aeronautical manufacturing technology, 2005, 48(12) : 80-84.
[2] BOUZID W, TSOUMAREV O, SAÏ K. An investigation of surface roughness of burnished AISI 1042 steel [ J] . The international journal of advanced manufacturing technology, 2004, 24(1 / 2) : 120-125.
[3] 周永鑫. 切削加工表面塑性变形对试件疲劳寿命 的影响研究[D] . 淄博: 山东理工大学, 2020.
ZHOU Y X. Research on the influence of surface plastic deformation of machining on fatigue life of specimens [ D ] . Zibo: Shandong University of Technology, 2020.
[4] 李伯民, 赵波. 现代磨削技术[ M] . 北京: 机械工 业出版社, 2003.
LI B M, ZHAO B. Modern grinding technology[ M] . Beijing: China Machine Press, 2003.
[5] 岳彩旭, 刘献礼, 姬生园, 等. 硬态切削技术[ J] . 航空制造技术, 2008, 51(18) : 26-29.
YUE C X, LIU X L, JI S Y, et al. Hard cutting technology [ J ] . Aeronautical manufacturing technology, 2008, 51(18) : 26-29.
[6] KARPUSCHEWSKI B, SCHMIDT K, BEN ˇ O J, et al. Measuring procedures of cutting edge preparation when hard turning with coated ceramics tool inserts [ J] . Measurement, 2014, 55: 627-640.
[7] TANG L H, GAO C X, HUANG J L, et al. Experimental investigation of surface integrity in finish dry hard turning of hardened tool steel at different hardness levels[ J] . The international journal of advanced manufacturing technology, 2015, 77(9 / 10 / 11 / 12) : 1655 -1669.
[8] MARTELL J J, LIU C R, SHI J. Experimental investigation on variation of machined residual stresses by turning and grinding of hardened AISI 1053 steel[ J] . The international journal of advanced manufacturing technology, 2014, 74(9 / 10 / 11 / 12) : 1381-1392.
[9] KUNDRAK J, GYANI K, BANA V. Roughness of ground and hard-turned surfaces on the basis of 3D parameters [ J ] . The international journal of advanced manufacturing technology, 2008, 38 ( 1 / 2 ) : 110-119.
[10] 唱佳林, 李安海. 42CrMo 钢多工步车削加工表面 完整性研究[ J] . 工具技术, 2021, 55(7) : 49-53. CHANG J L, LI A H. Surface integrity of 42CrMo steel in multi-step turning [ J ] . Tool engineering, 2021, 55(7) : 49-53.
[11] SCHUBNELL J, PONTNER P, WIMPORY R C, et al. The influence of work hardening and residual stresses on the fatigue behavior of high f frequency mechanical impact treated surface layers [ J ] . International journal of fatigue, 2020, 134: 105450.
[12] SPRINGER P, PRAHL U. Characterisation of mechanical behavior of 18CrNiMo7-6 steel with and without nb under warm forging conditions through processing maps analysis[ J] . Journal of materials processing technology, 2016, 237: 216-234.
[13] 张银霞, 原少帅, 王子乐, 等. 18CrNiMo7-6 钢高速 外圆磨削残余应力和硬度的试验分析[ J] . 金刚石 与磨料磨具工程, 2021, 41(1) : 65-70.
ZHANG Y X, YUAN S S, WANG Z L, et al. Experimental analysis of residual stress and hardness of 18CrNiMo7-6 steel in high speed cylindrical grinding [ J ] . Diamond & abrasives engineering, 2021, 41 (1) : 65-70.
[14] 王 栋, 律 谱, 陈 真 真. 三 维 表 面 粗 糙 度 对 18CrNiMo7-6 钢旋转弯曲疲劳寿命的影响 [ J] . 表 面技术, 2019, 48(11) : 283-289.
WANG D, LYU P, CHEN Z Z. Effect of three-dimensional surface roughness on rotating bending fatigue life of 18CrNiMo7-6 steel[ J] . Surface technology, 2019, 48(11) : 283-289.
[15] JOSEFSON B L, STIGH U, HJELM H E. A nonlinear kinematic hardening model for elastoplastic deformations in grey cast iron[ J] . Journal of engineering materials and technology, 1995, 117(2) : 145-150.
[16] 原少帅. 高速外圆磨削表面完整性与疲劳试样机 加工工艺研究[D] . 郑州:郑州大学, 2021.
YUAN S S. Study on surface integrity of high-speed cylindrical grinding and machining technology of fatigue specimens [ D] . Zhengzhou:Zhengzhou University, 2021.
[17] 国家质量监督检验检疫总局, 中国国家标准化管 理委员会. 金属显微组织检验方法: GB / T 13298— 2015[ S] . 北京: 中国标准出版社, 2016.
General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China, Standardization Administration of the People′s Republic of China. Inspection methods of microstructure for metals: GB / T 13298—2015[S]. Beijing: Standards Press of China, 2016.