[1]张银霞,刘修武,原少帅,等.硬态车削工艺对18CrNiMo7-6 钢表层硬度及微观组织的影响[J].郑州大学学报(工学版),2022,43(05):59-64.[doi:10.13705/j.issn.1671-6833.2022.05.004]
 ZHANG Yinxia,LIU Xiuwu,YUAN Shaoshuai,et al.Impact of Hard Turning Process on Surface Hardness and Microstructure of 18CrNiMo7-6 Steel[J].Journal of Zhengzhou University (Engineering Science),2022,43(05):59-64.[doi:10.13705/j.issn.1671-6833.2022.05.004]
点击复制

硬态车削工艺对18CrNiMo7-6 钢表层硬度及微观组织的影响()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
43
期数:
2022年05期
页码:
59-64
栏目:
出版日期:
2022-08-22

文章信息/Info

Title:
Impact of Hard Turning Process on Surface Hardness and Microstructure of 18CrNiMo7-6 Steel
作者:
郑州大学机械与动力工程学院;

Author(s):
ZHANG Yinxia LIU Xiuwu YUAN Shaoshuai GAO Wei LIU Zhihua
School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China
关键词:
Keywords:
18CrNiMo7-6 steel hard turning process parameters work hardening metallographic structure
分类号:
TG519. 1
DOI:
10.13705/j.issn.1671-6833.2022.05.004
文献标志码:
A
摘要:
为了探究 18CrNiMo7-6 钢硬态车削工艺参数对加工硬化及金相组织的影响,采用 PCBN 刀具对18CrNiMo7-6 钢漏斗形疲劳试样硬态车削圆弧段时的主轴转速 n、背吃刀量 ap 和进给速度 vf 进行了单因素实验研究。 运用显微硬度计和超景深三维显微系统表征了试样在不同工艺条件下的表层硬度、加工硬化影响深度及微观组织。 研究结果表明:硬态车削为漏斗形疲劳试样的圆弧段造成了一定的加工硬化,硬化影响层深度为 120 ~ 200 μm,加工硬化程度为 4. 31% ~ 8. 27%。 在试验条件下,随着 n 的增大,试样的硬化程度先增大后减小,硬化影响层深变化不大;随着 ap 增大,试样的硬化影响层深和硬化程度都逐渐增大;vf 对试样的加工硬化程度先增大后减小,对硬化影响层深没有明显规律;随着径向深度的增加,试样金相组织发生变化,且硬度值逐渐下降,车削工艺参数对试样表层金相组织的影响很小;当n、ap 及 vf 分别为 1 200 r / min、0. 15 mm、 50 mm / min 时,试样表层出现软化现象,高碳马氏体转化为硬度较低的 回火屈氏体。 该 研究为 18C rNiMo7-6 淬 硬钢的硬态 车削工艺制定提供了参考依据。
Abstract:
In order to explore the impact of hard turning process parameters of 18CrNiMo7-6 steel on work hardening and metallographic structure, PCBN tool was used to hard turning of the arc section of the 18CrNiMo7-6 steel funnel-shaped fatigue sample. The spindle speed n and the turning back ap and feed rate vf were carried out a as single factor experimental study. The surface hardness, work hardening depth of influence and microstructure of the samples under different process conditions were characterized by a microhardness tester and super depth of field 3D microscopy system. The research results showed that hard turning introduced a certain amount of work hardening to the arc segment of the funnel-shaped fatigue specimen, the depth of the hardened layer was 120~200 μm, and the degree of work hardening was 4.31%~8.27%. In the experiment conditions, with the increase of n, the degree of hardening of the sample first increased and then decreased, and the depth of the hardened layer did not change much; with the increase of ap, the depth of the hardened layer and the degree of hardening of the sample increased gradually; vf increased the degree of work hardening of the sample first and then decreased, and there was no obvious rule for the depth of the hardened layer; with the increase of the radial depth, the metallographic structure of the sample changed, and the hardness gradually decreased, and turning parameters had little effect on the metallographic structure of the surface of the sample; when n, ap and vf were 1 200 r/min, 0.15 mm and 50 mm/min, respectively, the surface of the sample softens, and the high-carbon martensite is transformed into a lower hardness tempered troostite. The finding of this study costed extra light on the formulation of hard turning process for 18CrNiMo7-6 hardened steel.

参考文献/References:

[1] 袁熙, 李舜酩. 疲劳寿命预测方法的研究现状与发 展[ J] . 航空制造技术, 2005, 48(12) : 80-84. 

YUAN X, LI S M. Research status and development of forecast method of fatigue life [ J ] . Aeronautical manufacturing technology, 2005, 48(12) : 80-84. 
[2] BOUZID W, TSOUMAREV O, SAÏ K. An investigation of surface roughness of burnished AISI 1042 steel [ J] . The international journal of advanced manufacturing technology, 2004, 24(1 / 2) : 120-125. 
[3] 周永鑫. 切削加工表面塑性变形对试件疲劳寿命 的影响研究[D] . 淄博: 山东理工大学, 2020. 
ZHOU Y X. Research on the influence of surface plastic deformation of machining on fatigue life of specimens [ D ] . Zibo: Shandong University of Technology, 2020. 
[4] 李伯民, 赵波. 现代磨削技术[ M] . 北京: 机械工 业出版社, 2003. 
LI B M, ZHAO B. Modern grinding technology[ M] . Beijing: China Machine Press, 2003. 
[5] 岳彩旭, 刘献礼, 姬生园, 等. 硬态切削技术[ J] . 航空制造技术, 2008, 51(18) : 26-29. 
YUE C X, LIU X L, JI S Y, et al. Hard cutting technology [ J ] . Aeronautical manufacturing technology, 2008, 51(18) : 26-29.
[6] KARPUSCHEWSKI B, SCHMIDT K, BEN ˇ O J, et al. Measuring procedures of cutting edge preparation when hard turning with coated ceramics tool inserts [ J] . Measurement, 2014, 55: 627-640.
[7] TANG L H, GAO C X, HUANG J L, et al. Experimental investigation of surface integrity in finish dry hard turning of hardened tool steel at different hardness levels[ J] . The international journal of advanced manufacturing technology, 2015, 77(9 / 10 / 11 / 12) : 1655 -1669. 
[8] MARTELL J J, LIU C R, SHI J. Experimental investigation on variation of machined residual stresses by turning and grinding of hardened AISI 1053 steel[ J] . The international journal of advanced manufacturing technology, 2014, 74(9 / 10 / 11 / 12) : 1381-1392. 
[9] KUNDRAK J, GYANI K, BANA V. Roughness of ground and hard-turned surfaces on the basis of 3D parameters [ J ] . The international journal of advanced manufacturing technology, 2008, 38 ( 1 / 2 ) : 110-119. 
[10] 唱佳林, 李安海. 42CrMo 钢多工步车削加工表面 完整性研究[ J] . 工具技术, 2021, 55(7) : 49-53. CHANG J L, LI A H. Surface integrity of 42CrMo steel in multi-step turning [ J ] . Tool engineering, 2021, 55(7) : 49-53. 
[11] SCHUBNELL J, PONTNER P, WIMPORY R C, et al. The influence of work hardening and residual stresses on the fatigue behavior of high f frequency mechanical impact treated surface layers [ J ] . International journal of fatigue, 2020, 134: 105450. 
[12] SPRINGER P, PRAHL U. Characterisation of mechanical behavior of 18CrNiMo7-6 steel with and without nb under warm forging conditions through processing maps analysis[ J] . Journal of materials processing technology, 2016, 237: 216-234.
[13] 张银霞, 原少帅, 王子乐, 等. 18CrNiMo7-6 钢高速 外圆磨削残余应力和硬度的试验分析[ J] . 金刚石 与磨料磨具工程, 2021, 41(1) : 65-70. 
ZHANG Y X, YUAN S S, WANG Z L, et al. Experimental analysis of residual stress and hardness of 18CrNiMo7-6 steel in high speed cylindrical grinding [ J ] . Diamond & abrasives engineering, 2021, 41 (1) : 65-70. 
[14] 王 栋, 律 谱, 陈 真 真. 三 维 表 面 粗 糙 度 对 18CrNiMo7-6 钢旋转弯曲疲劳寿命的影响 [ J] . 表 面技术, 2019, 48(11) : 283-289. 
WANG D, LYU P, CHEN Z Z. Effect of three-dimensional surface roughness on rotating bending fatigue life of 18CrNiMo7-6 steel[ J] . Surface technology, 2019, 48(11) : 283-289. 
[15] JOSEFSON B L, STIGH U, HJELM H E. A nonlinear kinematic hardening model for elastoplastic deformations in grey cast iron[ J] . Journal of engineering materials and technology, 1995, 117(2) : 145-150. 
[16] 原少帅. 高速外圆磨削表面完整性与疲劳试样机 加工工艺研究[D] . 郑州:郑州大学, 2021. 
YUAN S S. Study on surface integrity of high-speed cylindrical grinding and machining technology of fatigue specimens [ D] . Zhengzhou:Zhengzhou University, 2021.
[17] 国家质量监督检验检疫总局, 中国国家标准化管 理委员会. 金属显微组织检验方法: GB / T 13298— 2015[ S] . 北京: 中国标准出版社, 2016. 
General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China, Standardization Administration of the People′s Republic of China. Inspection methods of microstructure for metals: GB / T 13298—2015[S]. Beijing: Standards Press of China, 2016.

更新日期/Last Update: 2022-08-20