[1] ELLAMLA H R, BUJLO P, SITA C, et al. Comparatative analysis on various reformers supplied with different fuels and integrated with high temperature PEM fuel cells [ J ] . Chemical engineering science, 2016, 154: 90-99.
[2] VÁZQUEZ F V, SIMELL P, PENNANEN J, et al. Reactor design and catalysts testing for hydrogen production by methanol steam reforming for fuel cells applications[ J] . International journal of hydrogen energy, 2016, 41(2) : 924-935.
[3] 张方柏. 生物质油催化重整制氢用镍基催化剂研 究[D] . 成都: 成都理工大学, 2014.
ZHANG F B. Catalytic reforming of bio-oil for hydrogen production over Ni-based catalysts[D] . Chengdu: Chengdu University of Technology, 2014.
[4] 包秀秀. 生物油轻质组分模型化合物重整制氢研 究[D] . 杭州: 浙江大学, 2015.
BAO X X. Research about the steam reforming of model compound of bio-oil light component for hydrogen production [ D ] . Hangzhou: Zhejiang University, 2015.
[5] 安森萌, 付鹏, 易维明. 乙酸水蒸气重整制氢反应 的热力 学 分 析 [ J] . 太 阳 能 学 报, 2013, 34 ( 9) : 1526-1530.
AN S M, FU P, YI W M. Thermodynamic analysis of hydrogen production via steam reforming of acetic acid [ J ] . Acta energiae solaris sinica, 2013, 34 ( 9 ) : 1526-1530.
[6] 王东旭, 肖显斌, 李文艳. 乙酸水蒸气重整制氢过 程的热力学分析 [ J] . 新能源进展, 2017, 5 ( 5) : 346-351.
WANG D X, XIAO X B, LI W Y. Thermodynamic analysis on steam reforming of a production[ J] . Advances in new and renewable energy, 2017, 5(5) : 346-351.
[7] HU X, LU G X. Comparative study of alumina-supported transition metal catalysts for hydrogen generation by steam reforming of acetic acid[ J] . Applied catalysis B: environmental, 2010, 99(1 / 2) : 289-297.
[8] WANG S R, CAI Q J, ZHANG F, et al. Hydrogen production via catalytic reforming of the bio-oil model compounds: acetic acid, phenol and hydroxyacetone [ J] . International journal of hydrogen energy, 2014, 39(32) : 18675-18687.
[9] 赵星岭. 乙二醇低温蒸汽重整制氢的研究[D] . 烟 台: 烟台大学, 2016.
ZHAO X L. Research on hydrogen production from steam reforming of ethylene glycol at low temperature [D] . Yantai: Yantai University, 2016.
[10] NABGAN W, TUAN ABDULLAH T A, MAT R, et al. Acetic acid-phenol steam reforming for hydrogen production: effect of different composition of La2O3 - Al 2O3 support for bimetallic Ni-Co catalyst[ J] . Journal of environmental chemical engineering, 2016, 4( 3) : 2765-2773.
[11] 陈俊英, 周航宇, 唐焕妍, 等. 响应面法优化纤维 素基载体 固 定 糖 化 酶 的 研 究 [ J] . 郑 州 大 学 学 报 (工学版) , 2019, 40(2) : 66-71.
CHEN J Y, ZHOU H Y, TANG H Y, et al. Optimization for cellulose carrier immobilized glucoamylase by response surface methodology [ J] . Journal of Zhengzhou university ( engineering science) , 2019, 40(2) : 66-71.
[12] LI W, PAN C Y, ZHANG Q J, et al. Upgrading of low-boiling fraction of bio-oil in supercritical methanol and reaction network [ J ] . Bioresource technology, 2011, 102(7) : 4884-4889.
[13] HOU T, YUAN L X, YE T Q, et al. Hydrogen production by low-temperature reforming of organic compounds in bio-oil over a CNT-promoting Ni catalyst [ J] . International journal of hydrogen energy, 2009, 34(22) : 9095-9107.
[14] ARANDIA A, REMIRO A, OAR-ARTETA L, et al. Reaction conditions effect and pathways in the oxidative steam reforming of raw bio-oil on a Rh / CeO2 -ZrO2 catalyst in a fluidized bed reactor [ J ] . International journal of hydrogen energy, 2017, 42 ( 49 ) : 29175 -29185.