LIU Z P, WANG X P, LI M, et al. Multi-controller deployment strategy based on delay and load balancing[ J] . Journal of Zhengzhou university ( engineering science) , 2021, 42(3) : 19-25, 32.
[2] SCHWARZMANN S, MARQUEZAN C C, TRIVISONNO R, et al. Accuracy vs. cost trade-off for machine learning based QoE estimation in 5G networks [ C] / / IEEE International Conference on Communications ( ICC) . Piscataway: IEEE, 2020:1-6
[3] LIU Y F, ZHAO B, ZHAO P Y, et al. A survey: typical security issues of software-defined networking[ J] . China communications, 2019, 16(7) : 13-31.
[4] REZA M, JAVAD M, RAOUF S, et al. Network traffic classification using machine learning techniques over software defined networks[ J] . International journal of advanced computer science and applications, 2017, 8( 7) : 220-225.
[5] TANG F X, MAO B M, FADLULLAH Z M, et al. On removing routing protocol from future wireless networks: a real-time deep learning approach for intelligent traffic control [ J ] . IEEE wireless communications, 2018, 25 (1) : 154-160.
[6] RAO Z H, XU Y Y, PAN S M. A deep learning-based constrained intelligent routing method [ J] . Peer-to-peer networking and applications, 2021, 14(4) : 2224-2235.
[7] LIU W X, CAI J, CHEN Q C, et al. DRL-R: deep reinforcement learning approach for intelligent routing in software-defined data-center networks[ J] . Journal of network and computer applications, 2021, 177: 102865.
[8] CHEN B, SUN P H, ZHANG P, et al. Traffic engineering based on deep reinforcement learning in hybrid IP / SR network [ J ] . China communications, 2021, 18 ( 10 ) : 204-213.
[9] 王丙琛, 司怀伟, 谭国真. 基于深度强化学习的自动 驾驶车控制算法研究[ J] . 郑州大学学报( 工学版) , 2020, 41(4) : 41-45, 80.
WANG B C, SI H W, TAN G Z. Research on autopilot control algorithm based on deep reinforcement learning [ J] . Journal of Zhengzhou university ( engineering science) , 2020, 41(4) : 41-45, 80.
[10] HEESS N, HUNT J J, LILLICRAP T P, et al. Me-morybased control with recurrent neural networks [ EB / OL] . (2015- 12 - 14 ) [ 2021 - 10 - 20 ] . https: / / arxiv. org / abs/ 1512. 04455v1.
[11] XI L, WU J N, XU Y C, et al. Automatic generation control based on multiple neural networks with actor-critic strategy[J]. IEEE transactions on neural networks and learning systems, 2021, 32(6): 2483-2493.
[12] FANG L L, LI X Y, WU Y R, et al. Deep recurrent Qlearning method for single intersection signal control [ C] / / 13th Asia Pacific Transportation Development Conference. Reston, USA: ASCE, 2020: 148-156.
[13] YAO Z, WANG Y, MENG L M, et al. DDPG-based energy-efficient flow scheduling algorithm in software-defined data centers[ J] . Wireless communications and mobile computing, 2021, 2021: 6629852.
[14] 李琳, 李玉泽, 张钰嘉, 等. 基于多估计器平均值的 深度确定性策略梯度算法[ J] . 郑州大学学报( 工学 版) , 2022, 43(2) : 15-21.
LI L, LI Y Z, ZHANG Y J, et al. Deep deterministic policy gradient algorithm based on mean of multiple estimators[ J] . Journal of Zhengzhou university ( engineering science) , 2022, 43(2) : 15-21.
[15] LI S, LI W Q, COOK C, et al. Independently recurrent neural network ( IndRNN) : building a longer and deeper RNN[C] / / 2018 IEEE / CVF Conference on Computer Vision and Pattern Recognition. Psicataway: IEEE, 2018: 5457-5466.
[16] SHERSTINSKY A. Fundamentals of recurrent neural network (RNN) and long short-term memory ( LSTM) network[ J] . Physica D: nonlinear phenomena, 2020, 404: 132306.
[17] WEHRLE K, GÜNEŞ M, GROSS J. Modeling and tools for network simulation[M] . Berlin: Springer-Verlag Berlin Heidelberg, 2010.
[18] PATHAK S, MANI A, SHARMA M, et al. A novel salp swarm algorithm for controller placement problem [ J ] . Trends in computational intelligence, security and Internet of Things, 2020, 1358:24-36.
[19] BULL P, MURPHY S, BRUNO JUNIOR N, et al. A flow analysis and preemption fra