[1] 赵耀, 张赣波, 李良伟. 船舶推进轴系纵向振动及其 控制技 术 研 究 进 展 [ J] . 中 国 造 船, 2011, 52 ( 4) : 259-269. ZHAO Y, ZHANG G B, LI L W. Review of advances on longitudinal vibration of ship propulsion shafting and its control technology[ J] . Shipbuilding of China, 2011, 52 (4) : 259-269.
[2] GOODWIN A J H. The design of a resonance changer to overcome excessive axial vibration of propeller shafting [ J] . Transactions of the institute of marine engineers, 1960, 72: 37-63.
[3] DYLEJKO P G, KESSISSOGLOU N J, TSO Y, et al. Optimisation of a resonance changer to minimise the vibration transmission in marine vessels [ J ] . Journal of sound and vibration, 2007, 300(1 / 2) : 101-116.
[4] MERZ S, KINNS R, KESSISSOGLOU N. Structural and acoustic responses of a submarine hull due to propeller forces[ J ] . Journal of sound and vibration, 2009, 325 (1 / 2) : 266-286.
[5] 储炜, 赵耀, 张赣波, 等. 共振转换器的动力反共振 隔振理论与应用[ J] . 船舶力学, 2016, 20( 增刊 1) : 222-230.
CHU W, ZHAO Y, ZHANG G B, et al. Dynamic antiresonance vibration isolation theory of resonance changer and application[ J] . Journal of ship mechanics, 2016, 20 ( S1) : 222-230.
[6] 胡泽超, 何琳, 徐伟, 等. 船舶推进轴系纵向振动共 振转换器的优化设计[ J] . 中国舰船研究, 2019, 14 (1) : 107-113.
HU Z C, HE L, XU W, et al. Optimzation design of resonance changer for marine propulsion shafting in longitudinal vibration [ J ] . Chinese journal of ship research, 2019, 14(1) : 107-113.
[7] 刘扭扭. 基于动力反共振的推进轴系纵向振动控制方 法研究[D] . 上海: 上海交通大学, 2019.
LIU N N. Investigation on longitudinal vibration control method of the shafting system based on dynamic antiresonance vibration isolator [ D ] . Shanghai: Shanghai Jiao Tong University, 2019.
[8] 吴明亮, 赵晨名, 张来喜. 准零刚度振动控制系统的研 究进展[J]. 南京理工大学学报, 2021, 45(1): 18-26.
WU M L, ZHAO C M, ZHANG L X. Research progress of quasi-zero stiffness vibration control system[ J] . Journal of Nanjing university of science and technology, 2021, 45(1) : 18-26.
[9] CARRELLA A, BRENNAN M J, KOVACIC I, et al. On the force transmissibility of a vibration isolator with quasizero-stiffness[ J] . Journal of sound and vibration, 2009, 322(4 / 5) : 707-717.
[10] LE T D, AHN K K. A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat[ J] . Journal of sound and vibration, 2011, 330(26) : 6311-6335.
[11] HUANG X C, LIU X T, HUA H X. Effects of stiffness and load imperfection on the isolation performance of a high-static-low-dynamic-stiffness non-linear isolator under base displacement excitation [ J]. International journal of non-linear mechanics, 2014, 65: 32-43.
[12] SUN X T, JING X J. Analysis and design of a nonlinear stiffness and damping system with a scissor-like structure [ J ] . Mechanical systems and signal processing, 2016 (66 / 67) : 723-742.
[13] WANG X L, ZHOU J X, XU D L, et al. Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness[ J] . Nonlinear dynamics, 2017, 87(1) : 633-646.
[14] 白晓辉, 白鸿柏, 郝慧荣. 碟形弹簧负刚度在低频精 密隔振中的应用研究[ J] . 新技术新工艺, 2009( 10) : 24-27.
BAI X H, BAI H B, HAO H R. Application research on the negative stiffness of disk spring used in low frequency precision vibration isolation [ J] . New technology & new process, 2009(10) : 24-27.
[15] MENG L S, SUN J G, WU W J. Theoretical design and characteristics analysis of a quasi-zero stiffness isolator using a disk spring as negative stiffness element[ J] . Shock and vibration, 2015, 2015: 813763.
[16] 孟令帅, 孙景工, 牛福, 等. 新型准零刚度隔振系统 的设计与研究[ J] . 振动与冲击, 2014, 33(11) : 195- 199.
MENG L S, SUN J G, NIU F, et al. Design and analysis of a novel quasi-zero stiffness vibration isolation system [ J] . Journal of vibration and shock, 2014, 33 ( 11 ) : 195-199.
[17] 张阳阳, 所俊. 推力轴承隔振对潜艇声振特性影响研 究[J]. 噪声与振动控制, 2020, 40(3): 240-245.
ZHANG Y Y, SUO J. Study on the influence of thrust bearing isolation on the acoustic and vibration characteristics of submarines [ J ] . Noise and vibration control, 2020, 40(3) : 240-245.
[18] ALMEN J O. The uniform-section disk spring[ J] . Transactions of the American society of mechanical engineers, 1936,58:305-314.