[1]房占鹏,冉凯文,田淑侠,等.约束阻尼板的黏弹性阻尼层细观拓扑优化设计[J].郑州大学学报(工学版),2022,43(04):60-66.[doi:10.13705/j.issn.1671-6833.2022.04.005]
 FANG Zhanpeng,RAN Kaiwen,TIAN Shuxia,et al.Mesoscopic Topology Optimization of Viscoelastic Damping Layer for Constrained Layer Damping Plate[J].Journal of Zhengzhou University (Engineering Science),2022,43(04):60-66.[doi:10.13705/j.issn.1671-6833.2022.04.005]
点击复制

约束阻尼板的黏弹性阻尼层细观拓扑优化设计()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
43
期数:
2022年04期
页码:
60-66
栏目:
出版日期:
2022-07-03

文章信息/Info

Title:
Mesoscopic Topology Optimization of Viscoelastic Damping Layer for Constrained Layer Damping Plate
作者:
房占鹏 冉凯文 田淑侠 肖艳秋 王 猛
郑州轻工业大学河南省新能源汽车轻量化设计与制造工程研究中心;

Author(s):
FANG ZhanpengRAN KaiwenTIAN ShuxiaXIAO YanqiuWANG Meng
Henan Engineering Research Center of New Energy Vehicle Lightweight Design and Manufacturing,Zhengzhou University of Light Industry,Zhengzhou 450002,China
关键词:
Keywords:
viscoelastic damping materialrepresentative volume elementmesoscopic topology optimizationmodal loss factor
分类号:
TB53
DOI:
10.13705/j.issn.1671-6833.2022.04.005
文献标志码:
A
摘要:
针对约束阻尼板的减振优化设计问题,提出一种约束阻尼板的黏弹性阻尼层细观拓扑优化方法。 黏弹性阻尼层由三维单胞组成,采用代表体元法对三维单胞的等效材料属性进行分析。 在对三维单胞施加边界条件时,考虑三维单胞上下表面受到约束层和基层约束的影响,在此基础上建立约束阻尼 结构的宏观有限元模型。 以宏观结构模态损耗因子最大化为优化目标,建立约束阻尼结构的黏弹性阻尼层细观结构拓扑优化模型。 分析了优化目标函数关于设计变量的灵敏度,采用优化准则法对建立的优化模型求解。 对建立的周期开孔的约束阻尼板有限元模型进行模态分析,与细分网格法对比,考虑边界约束的代表体元法计算得到的固有频率和模态损耗因子最大误差分别为 0. 09% 和 3. 60% ,而传统均匀化方法计算得到的固有频率和模态损耗因子最大误差分别为 1. 18% 和 6. 59% ,可见考虑边界约束的代表体元法的计算精度要高于传统均匀化方法。 以黏弹性阻尼材料体积分数 0. 4 为约束条件,分别以一阶、二阶和三阶模态损耗因子最大化为优化目标,对约束阻尼板的黏弹性阻尼层细观构型进行优化。结果表明,黏弹性阻尼层细观优化构型与目标阶次的模态振型和模态剪切应力方向相关;在黏弹性阻尼材 料使用量减少了 60% 的情况下, 优化结构的目标一阶、二阶和三阶模态损耗因子分别增加了 3. 70%、14. 86% 和 10. 22%,共振响应峰值分别减小了 9. 71%、10% 和 13. 33%,验证了优化方法的正确性和有效性。
Abstract:
A mesoscopic topology optimization for viscoelastic damping layer of constrained layer damping (CLD) plates was proposed to solve the problem of vibration reduction optimization of CLD structures.The viscoelastic damping layer consisted of 3D unit cells.Representative volume element (RVE) was used to analyze the equivalent material properties of 3D unit cells.The imposed boundary conditions on the 3D unit cells of the viscoelastic layer were considering rigid skin effects.A mesoscopic topology optimization model for viscoelastic damping layer of CLD structure was established to maximize the modal loss factor of macrostructure.The sensitivities of the objective function with respect to the design variables were analyzed and the design variables were updated by optimality criteria (OC) method.The modal analysis of finite element model of periodic perforated CLD plate was carried out.Campared with fined-mesh method,the maximum errors of natural frequency and modal loss factor calculated by RVE considering rigid skin effects were 0.09% and 3.60%,respectively.However,the maximum errors of natural frequency and modal loss factor calculated by the traditional homogenization method were 1.18% and 6.59%,respectively.It could be seen that the calculation accuracy of RVE considering rigid skin effects was higher than that of the traditional homogenization method.With the volume fraction of viscoelastic damping material being 0.4 as the constraint,the meso-configuration of viscoelastic damping material of CLD plate was optimized with the first,second and third order modal loss factor maximization as the optimization objective.The results showed that the meso-configuration of viscoelastic damping layer was related to the modal shape of the target order and the direction of modal shear stress.Although the consumption of viscoelastic damping material was reduced by 60%,the first three modal loss factors of the optimized structure increased by 3.70%,14.86% and 10.22%,respectively.The resonant peaks decreased by 9.71%,10% and 13.33%,respectively.The correctness and effectiveness of the proposed optimization method were verified.

参考文献/References:

[1] HUANG Z C, QIN Z Y, CHU F L. Vibration and damping characteristics of sandwich plates with viscoelastic core[ J] . Journal of vibration and control, 2016, 22(7) : 1876-1888. 

[2] ZHENG L, XIE R L, WANG Y, et al. Topology optimization of constrained layer damping on plates using method of moving asymptote ( MMA) approach [ J ] . Shock and vibration, 2011, 18: 830793. 
[3] 贺红林, 陶结, 刘尧弟, 等. 基于渐进法的约束阻 尼结构拓 扑 多 目 标 动 力 学 优 化 [ J] . 中 国 机 械 工 程, 2016, 27(17) : 2310-2315, 2321. 
HE H L, TAO J, LIU Y D, et al. Topological multiobjective dynamics optimization of constrained damping structure based on evolutionary structural optimization [ J] . China mechanical engineering, 2016, 27( 17) : 2310-2315, 2321. 
[4] ZHANG J Q, CHEN Y G, ZHAI J Y, et al. Topological optimization design on constrained layer damping treatment for vibration suppression of aircraft panel via improved evolutionary structural optimization[ J] . Aerospace science and technology, 2021, 112: 106619. 
[5] 侯俊剑, 房占鹏, 何文斌. 基于位移响应最小化的 约束阻尼结构优化设计[ J] . 郑州大学学报( 工学 版) , 2017, 38(3) : 87-91, 96.
 HOU J J, FANG Z P, HE W B. Structure optimization design of constrained layer damping structures to minimize displacement response as optimization goal [ J ] . Journal of Zhengzhou university ( engineering science) , 2017, 38(3) : 87-91, 96.
 [6] HUANG X D, ZHOU S W, SUN G Y, et al. Topology optimization for microstructures of viscoelastic composite materials [ J] . Computer methods in applied mechanics and engineering, 2015, 283: 503-516.
 [7] ZHANG H, DING X H, WANG Q, et al. Topology optimization of composite material with high broadband damping [ J ] . Computers & structures, 2020, 239: 106331.
 [8] CHEN W J, LIU S T. Microstructural topology optimization of viscoelastic materials for maximum modal loss factor of macrostructures[ J] . Structural and multidisciplinary optimization, 2016, 53(1) : 1-14.
 [9] LIU Q M, RUAN D, HUANG X D. Topology optimization of viscoelastic materials on damping and frequency of macrostructures [ J] . Computer methods in applied mechanics and engineering, 2018, 337: 305 -323. 
[10] SOROHAN S, CONSTANTINESCU D M, SANDU M, et al. On the homogenization of hexagonal honeycombs under axial and shear loading. Part I: analytical formulation for free skin effect[ J] . Mechanics of materials, 2018, 119: 74-91.
 [11] BURLAYENKO V N, SADOWSKI T. Effective elastic properties of foam-filled honeycomb cores of sandwich panels[ J ] . Composite structures, 2010, 92 ( 12 ) : 2890-2900.
 [12] 刘天雄, 华宏星, 张志谊, 等. 主动约束层阻尼板 结构动力学建模研究[ J] . 高技术通讯, 2003, 13 (3) : 42-46. 
LIU T X, HUA H X, ZHANG Z Y, et al. Study on modeling of plate with active constrained layer damping treatments [ J ] . High technology letters, 2003, 13 (3) : 42-46.

更新日期/Last Update: 2022-07-03