[1]赵桂峰,魏丹洋,张 猛.光圆与非光圆绞突覆冰输电导线气动力特性分析[J].郑州大学学报(工学版),2022,43(06):57-63.[doi:10.13705/j.issn.1671-6833.2022.06.002]
 ZHAO Guifeng,WEI Danyang,ZHANG Meng.Aerodynamic Characteristics Analysis of Smooth Circular and Non Smooth Circular Ice-coated Conductors[J].Journal of Zhengzhou University (Engineering Science),2022,43(06):57-63.[doi:10.13705/j.issn.1671-6833.2022.06.002]
点击复制

光圆与非光圆绞突覆冰输电导线气动力特性分析()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
43
期数:
2022年06期
页码:
57-63
栏目:
出版日期:
2022-09-02

文章信息/Info

Title:
Aerodynamic Characteristics Analysis of Smooth Circular and Non Smooth Circular Ice-coated Conductors
作者:
赵桂峰 魏丹洋 张 猛
郑州大学水利与土木工程学院;

Author(s):
ZHAO GuifengWEI DanyangZHANG Meng
School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China
关键词:
Keywords:
aerodynamic characteristics smooth and non smooth fine conductor ice-coated conductors wind attack angle vortex shedding
分类号:
TM726
DOI:
10.13705/j.issn.1671-6833.2022.06.002
文献标志码:
A
摘要:
现有针对覆冰输电导线风致振动的模拟研究大多是将导线简化为理想光圆截面考虑其气动力特性的,对于实际导线绞突的截面特点考虑不足。 采用 Fluent 软件研究覆冰光圆与非光圆绞突截面导线的气动力特性,分析二者气动力系数在不同风速、覆冰厚度、覆冰形状和导线直径时的特点和差异。结果表明:两种截面覆冰导线气动力系数差异较大,其中,阻力系数和扭转系数最大相对偏差可达100%,升力系数最大相对偏差可达- 175%。 采用非光圆绞突截面导线会增加周期内涡脱落的数量,使其波动更加剧烈。 覆冰为新月形时,采用光圆截面导线会低估导线顺风向位移,高估横风向位移;覆冰为D形时,采用光圆截面导线比非光圆绞突截面导线下波动较为平缓且更有规律,会高估顺风向位移,低估横风向位移。 鉴于两种截面覆冰导线在气动力、涡脱图和位移响应均存在较大差异,覆冰输电线系统精细化抗风设计时应考虑导线截面绞突特性对其气动力的影响。
Abstract:
Most of the existing simulation studies on the wind-induced vibration of ice-coated conductors simplify the conductor to an ideal smooth circular section and accept its aerodynamic characteristics, but the section characteristics of the actual conductor twist are not considered enough. In this study, Fluent software is used to study the aerodynamic characteristics of ice-coated smooth circular and non smooth circular twisted section conductors, and to analyze the characteristics and differences of their aerodynamic coefficients at different wind speeds, icing thickness, icing shape and conductor diameter. The results showed that the aerodynamic coefficients of ice-coated conductors with two sections were quite different, among which the maximum relative deviation of drag coefficient and torsion coefficient could reach 100%, and the maximum relative deviation of lift coefficient could reach -175%.The use of non smooth circular twisted section conductor could increase the number of vortex shedding in the cycle and made its fluctuation more violent. When the icing was crescent shaped, the smooth circular section conductor could underestimate the downwind displacement and overestimate the crosswind displacement of the conductor. When the icing was D-shaped, the fluctuation of smooth circular section conductor was smoother and more regular than that of non smooth circular twisted section, which could overestimate the downwind displacement and underestimate the crosswind displacement. In view of the large differences in aerodynamic force, vortex shedding diagram and displacement response between the two types of coated ice conductors, the influence of conductor cross-section stranded characteristics on aerodynamic force should be considered in the fine wind resistance design of coated ice transmission line system.

参考文献/References:

[1] 谢强,孙启刚,管政. 多分裂导线整体阻力系数风洞 试验研究[ J] . 电网技术,2013,37(4) :1106-1112. 

XIE Q, SUN Q G, GUAN Z, et al. Wind tunnel test on global drag coefficients of multi-bundled conductors [ J] . Journal of wind engineering and industrial aerodynamics, 2013, 120: 9-18. 
[2] PRICE S J. Wake induced flutter of power transmission conductors [ J] . Journal of sound and vibration, 1975, 38(1) : 125-147. 
[3] 李万平. 覆冰导线群的动态气动力特性[ J] . 空气 动力学学报, 2000, 18(4) : 413-420. 
LI W P. Dynamic aerodynamic characteristics of the galloping of bundled iced power transmission lines[ J] . Acta aerodynamica sinica, 2000, 18(4) : 413-420.
 [4] 顾明, 马文勇, 全涌, 等. 两种典型覆冰导线气动 力特性及稳定性分析[ J] . 同济大学学报( 自然科 学版) , 2009, 37(10) : 1328-1332. 
GU M, MA W Y, QUAN Y, et al. Aerodynamic force characteristics and stabilities of two typical iced conductors[ J] . Journal of tongji university ( natural science) , 2009, 37(10) : 1328-1332.
 [5] 严波, 蔡萌琦, 吕欣, 等. 四分裂导线尾流驰振数值 模拟研究[J]. 振动与冲击, 2015, 34(1): 182-189. 
YAN B, CAI M Q,LYU X, et al. Numerical simulation on wake galloping of quad bundle conductor[ J] . Journal of vibration and shock, 2015, 34 ( 1 ) : 182 -189. 
[6] BRAUN A L, AWRUCH A M. Aerodynamic and aeroelastic analysis of bundled cables by numerical simulation[ J] . Journal of sound and vibration, 2005, 284 (1 / 2) : 51-73.
 [7] 何小宝, 严波, 伍川, 等. 双分裂导线尾流诱发振 荡数值模拟研究[ J] . 振动与冲击, 2017, 36( 4) : 59-65, 98. 
HE X B, YAN B, WU C, et al. A numerical simulation on wake-induced oscillation of twin bundle conductor lines [ J ] . Journal of vibration and shock, 2017, 36(4) : 59-65, 98. 
[8] 王少 华. 基 于 Fluent 的 覆 冰 导 线 气 动 特 性 分 析 [ J] . 高压电器, 2012, 48(1) : 64-69. 
WANG S H. Analysis of aerodynamic characteristics of iced conductor based on fluent[ J] . High voltage apparatus, 2012, 48(1) : 64-69.
 [9] 刘成, 刘慕广, 邹云峰. 考虑绞凸特征的输电线气 动力 CFD 模拟[ J] . 铁道科学与工程学报, 2020, 17(1) : 215-223. 
LIU C, LIU M G, ZOU Y F. CFD simulation of transmission lines aerodynamics considering the twisted convex characteristics [ J] . Journal of railway science and engineering, 2020, 17(1) : 215-223. 
[10] ZDERO R, TURAN Ö, HAVARD D G. Toward understanding galloping: near-wake study of oscillating smooth and stranded circular cylinders in forced motion [ J] . Experimental thermal and fluid science, 1995, 10(1) : 28-43.
 [11] KEYHAN H, MCCLURE G, HABASHI W G. Dynamic analysis of an overhead transmission line subject to gusty wind loading predicted by wind-conductor interaction [ J ] . Computers & structures, 2013, 122: 135-144. 
[12] 晏致涛, 王灵芝, 刘军, 等. 表面粗糙度对导线风 荷载及涡激振动的影 响 [ J] . 振 动 与 冲 击, 2018, 37(7) : 146-151. 
YAN Z T, WANG L Z, LIU J, et al. Effects of surface roughness of conductors on their wind loads and vortex-induced vibration[ J] . Journal of vibration and shock, 2018, 37(7) : 146-151. 
[13] ZDERO R, TURAN O F. The effect of surface strands, angle of attack, and ice accretion on the flow field around electrical power cables [ J ] . Journal of wind engineering and industrial aerodynamics, 2010, 98(10 / 11) : 672-678. 
[14] 张猛, 梁任, 赵桂峰. 架空导线径向温差及允许载 流量研究[ J] . 郑州大学学报( 工学版) , 2020, 41 (1) : 1-7. 
ZHANG M, LIANG R, ZHAO G F. Study on radial temperature distribution and maximum ampacity of overhead conductors[ J] . Journal of Zhengzhou university ( engineering science) , 2020, 41(1) : 1-7. 
[15] 国家质量监督检验检疫总局, 中国国家标准化管 理委 员 会. 圆 线 同 心 绞 架 空 导 线: GB / T 1179— 2008[ S] . 北京: 中国标准出版社, 2009. 
General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China, Standardization Administration of the People′s Republic of China. Round wire concentric lay overhead electrical stranded conductors: GB / T 1179—2008 [ S ] . Beijing: Standards Press of China, 2009. 
[16] 杨晓辉, 余江, 楼文娟. 基于子导线气动力参数的 D 形覆 冰 八 分 裂 导 线 舞 动 研 究 [ J ] . 科 技 通 报, 2019, 35(1) : 224-231.
 YANG X H, YU J, LOU W J. Study on galloping of D-shaped iced eight-bundled conductors based on subconductor aerodynamic coefficient[ J] . Bulletin of science and technology, 2019, 35(1) : 224-231.

更新日期/Last Update: 2022-10-03