参考文献/References:
[1] 魏宏彬, 张端金, 杜广明, 等. 基于改进型 YOLO v3 的蔬菜识别算法[ J] . 郑州大学学报( 工学版) , 2020, 41(2) : 7-12, 31.
WEI H B, ZHANG D J, DU G M, et al. Vegetable recognition algorithm based on improved YOLOv3[ J] . Journal of Zhengzhou university ( engineering science) , 2020, 41(2) : 7-12, 31.
[2] 楼 豪 杰, 郑 元 林, 廖 开 阳, 等. 基 于 SiameseYOLOv4 的印刷品缺陷目标检测[ J] . 计算机应用, 2021, 41(11) : 3206-3212.
LOU H J, ZHENG Y L, LIAO K Y, et al. Defect target detection for printed matter based on SiameseYOLOv4[ J] . Journal of computer applications, 2021, 41(11) : 3206-3212.
[3] 丁明宇, 牛玉磊, 卢志武, 等. 基于深度学习的图 片中商品参数识别方法[ J] . 软件学报, 2018, 29 (4) : 1039-1048.
DING M Y, NIU Y L, LU Z W, et al. Deep learning for parameter recognition in commodity images [ J ] . Journal of software, 2018, 29(4) : 1039-1048.
[4] ALES Z, LUKÁS P, ANTONÍN R. Sketch2Code: automatic hand-drawn UI elements detection with faster R-CNN[EB / OL] . ( 2020 - 09 - 22) [ 2021 - 04 - 12] . http:∥ceur-ws. org / Vol-2696 / paper_82. pdf.
[5] WIMMER C, UNTERTRIFALLER A, GRECHENIG T. SketchingInterfaces: a tool for automatically generating high-fidelity user interface mockups from handdrawn sketches [ C ] ∥32nd Australian Conference on Human-Computer Interaction. New York: ACM, 2020: 538-545.
[6] JOÃO S F, ANDRÉ R, HUGO S F. Automatically generating websites from hand-drawn mockups [ C] ∥ International Conference on Computer Vision Theory and Applications. Vienna: VISAPP,2021: 48-58.
[7] FICHOU D, BERARI R, BRIE P, et al. Overview of the 2020 imageCLEFdrawnUI task: detection and recognition of hand drawn website UIs[EB / OL] . ( 2020- 09-22) [ 2021 - 04 - 12] . http:∥ceur-ws. org / Vol - 2696 / paper_245. pdf.
[8] CHEN J S, XIE M L, XING Z C, et al. Object detection for graphical user interface: old fashioned or deep learning or a combination[C]∥Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. New York: ACM, 2020: 1202-1214.
[9] GHIASI G, CUI Y, SRINIVAS A, et al. Simple copypaste is a strong data augmentation method for instance segmentation [ C ] ∥2021 IEEE / CVF Conference on Computer Vision and Pattern Recognition ( CVPR) . Piscataway: IEEE, 2021: 2917-2927.
[10] REN S Q, HE K M, GIRSHICK R, et al. Faster RCNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[11] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[ C] ∥2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[12] ULTRALYTICS. YOLOv5 [ EB / OL ] . [ 2021 - 04 - 12] . https:∥github. com / ultralytics/ yolov5.