参考文献/References:
[1] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[ J] . Statistics , 2013, 26:1-9.
[2] YANG D Z, ZHANG A N. Performing literature review using text mining, part III: summarizing articles using TextRank[C]∥2018 IEEE International Conference on Big Data. Piscataway: IEEE, 2018: 3186-3190.
[3] HABI H V, JENNINGS R H, NETZER A. HMQ: hardware friendly mixed precision quantization block for CNNs[M] . Cham: Springer International Publishing, 2020: 448-463.
[4] BRANCO B, ABREU P, GOMES A S, et al. Interleaved sequence RNNs for fraud detection [ C] ∥Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 3101-3109.
[5] LI P H, FU T J, MA W Y. Why attention? analyze BiLSTM deficiency and its remedies in the case of NER[ J] . Proceedings of the AAAI conference on artificial intelligence, 2020, 34(5) : 8236-8244.
[6] 李勇, 金庆雨, 张青川. 融合位置注意力机制和改 进 BLSTM 的食品评论情感分析 [ J] . 郑州大学学 报(工学版) , 2020, 41(1) : 58-62.
LI Y, JIN Q Y, ZHANG Q C. Improved BLSTM food review sentiment analysis with positional attention mechanisms[ J] . Journal of Zhengzhou university ( engineering science) , 2020, 41(1) : 58-62.
[7] 魏强, 金芝, 许焱. 基于概率主题模型的物联网服 务发现[ J] . 软件学报, 2014, 25(8) : 1640-1658.
WEI Q, JIN Z, XU Y. Service discovery for Internet of Things based on probabilistic topic model[ J] . Journal of software, 2014, 25(8) : 1640-1658.
[8] ZHANG N, WANG J, MA Y T, et al. Web service discovery based on goal-oriented query expansion[ J] . Journal of systems and software, 2018, 142: 73-91.
[9] 郑垛萍, 姜 波, 汪 烨. 服 务 失 效 情 境 下 的 高 质 量 Web 服务推荐 [ J] . 小 型 微 型 计 算 机 系 统, 2015, 36(12) : 2675-2679.
ZHENG D P, JIANG B, WANG Y. Recommendation of high-quality web service in the failure context[ J] . Journal of Chinese computer systems, 2015, 36(12) : 2675-2679.
[10] CHEN Y Z, LU H J, SHAPIRO L, et al. An approach to semantic query expansion system based on Hepatitis ontology[ J] . Journal of biological researchThessaloniki, 2016, 23( S1) : 11.
[11] WEI D P, WANG T, WANG J, et al. SAWSDL iMatcher: a customizable and effective semantic web service matchmaker [ J ] . Journal of web semantics, 2011, 9(4) : 402-417.
[12] SATO I, NAKAGAWA H. Stochastic divergence minimization for online collapsed variational Bayes zero inference of latent dirichlet allocation[ C]∥Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2015: 1035-1044.
[13] CHEN F Z, LU C H, WU H, et al. A semantic similarity measure integrating multiple conceptual relationships for web service discovery [ J ] . Expert systems with applications, 2017, 67: 19-31.
[14] YIN Y Y, CHEN L, XU Y S, et al. QoS prediction for service recommendation with deep feature learning in edge computing environment [ J] . Mobile networks and applications, 2020, 25(2) : 391-401.
[15] SEVERYN A, MOSCHITTI A. Learning to rank short text pairs with convolutional deep neural networks[C]∥ Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2015: 373-382.
[16] LIZARRALDE I, RODRIGUEZ J M, MATEOS C, et al. Word embeddings for improving REST services discoverability[C]∥2017 XLIII Latin American Computer Conference (CLEI). Piscataway: IEEE, 2017: 1-8.
[17] HENDERSON P, FERRARI V. End-to-end training of object class detectors for mean average precision[C]∥ Asian Conference on Computer Vision. Cham: Springer, 2016: 198-213.
[18] DEVLIN J, CHANG M W, LEE K, et al. Bert: pretraining of deep bidirectional transformers for language understanding[EB / OL] . (2018-10- 11) [ 2021- 11- 10] . https:∥doi. org / 10. 48550 / arXiv. 1810. 04805.
[19] GAO T, YAO X, CHEN D. Simcse: simple contrastive learning of sentence embeddings[C]∥Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2021: 6894-6910.
[20] GROVER A, LESKOVEC J. Node2vec: scalable feature learning for networks [ C ] ∥Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864.
[21] ZHU Y, LIU M, TU Z, et al. SRaSLR: a novel social relation aware service label recommendation model[C] ∥2021 IEEE International Conference on Web Services ( ICWS) . Piscataway: IEEE, 2021: 87-96.