[1] 徐霜, 万强, 余琍. 基于学习理论的改进粒子群优 化算法 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2019, 40 (2) : 29-34.
XU S, WAN Q, YU L. An improved particle swarm optimization algorithm based on learning theory [ J ] . Journal of Zhengzhou university ( engineering science) , 2019, 40(2) : 29-34.
[2] DHIMAN G, KUMAR V. Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems [ J] . Knowledge-based systems, 2019, 165: 169-196.
[3] CHEN X, LI Y L, ZHANG Y C, et al. A novel hybrid model based on an improved seagull optimization algorithm for short-term wind speed forecasting [ J ] . Processes, 2021, 9(2) : 387.
[4] 岳文静,孙鹏,陈志. 基于改进海鸥算法的认知无人 机网络频谱分配[ J] . 计算机技术与发展,2021,31 (9) :7-12.
YUE W J, SUN P, CHEN Z. Spectrum allocation of cognitive UAV network based on improved seagull algorithm[ J] . Computer technology and development, 2021,31(9) :7-12.
[5] 许乐, 莫愿斌, 卢彦越. 基于改进海鸥优化算法的 PID 控制器参数优化 [ J] . 机床与液压, 2021, 49 (16) : 17-23.
XU L, MO Y B, LU Y Y. Parameter optimization of PID controller based on improved seagull optimization algorithm [ J] . Machine tool & hydraulics, 2021, 49 (16) : 17-23.
[6] 毛清华,王迎港. 融合改进 Logistics 混沌和正弦余 弦算子的自适应 T 分布海鸥算法[EB / OL] . (2021- 10-22) [2021- 11- 13] . http:∥kns. cnki. net. zzulib. vpn358. com / kns8 / defaultresult / index.
MAO Q H, WANG Y G. Adaptive T distribution seagull optimization algorithm combining improved logistics chaos and sine-cosine operator [ EB / OL ] . (2021-10-22) [2021-11-13] . http:∥kns. cnki. net. zzulib. vpn358. com / kns8 / defaultresult / index.
[7] 王宁, 何庆. 融合黄金正弦与 sigmoid 连续化的海 鸥优化算法[ J] . 计算机应用研究, 2022, 39( 1) : 157-162, 169.
WANG N, HE Q. Seagull optimization algorithm combining golden sine and sigmoid continuity[ J] . Application research of computers, 2022, 39 ( 1 ) : 157 - 162, 169.
[8] 秦维娜, 张达敏, 尹德鑫, 等. 一种基于非线性惯 性权重的 海 鸥 优 化 算 法 [ J] . 小 型 微 型 计 算 机 系 统, 2022, 43(1) : 10-14.
QIN W N, ZHANG D M, YIN D X, et al. Seagull optimization algorithm based on nonlinear inertia weight [ J] . Journal of Chinese computer systems, 2022, 43 (1) : 10-14.
[9] CHE Y H, HE D X. A hybrid whale optimization with seagull algorithm for global optimization problems [ J ] . Mathematical problems in engineering, 2021, 2021: 6639671.
[10] TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence [ C ] ∥ International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce. Piscataway:IEEE, 2005: 695-701.
[11] 刘琨, 赵露露, 王辉. 一种基于精英反向和纵横交 叉的鲸 鱼 优 化 算 法 [ J] . 小 型 微 型 计 算 机 系 统, 2020, 41(10) : 2092-2097.
LIU K, ZHAO L L, WANG H. Whale optimization algorithm based on elite opposition-based and crisscross optimization [ J ] . Journal of Chinese computer systems, 2020, 41(10) : 2092-2097.
[12] 周文峰, 梁晓磊, 唐可心, 等. 具有拓扑时变和搜 索扰动的混合粒子群优化算法[ J] . 计算机应用, 2020, 40(7) : 1913-1918.
ZHOU W F, LIANG X L, TANG K X, et al. Hybrid particle swarm optimization algorithm with topological time-varying and search disturbance [ J ] . Journal of computer applications, 2020, 40(7) : 1913-1918.
[13] 孙敏, 叶侨楠, 陈中雄. 云环境下方差定向变异遗 传算法 的 任 务 调 度 [ J ] . 计 算 机 应 用, 2019, 39 (11) : 3328-3332.
SUN M, YE Q N, CHEN Z X. Task scheduling of variance-directional variation genetic algorithm in cloud environment [ J ] . Journal of computer applications, 2019, 39(11) : 3328-3332.
[14] 沈鑫, 邹德旋, 张强. 采用双变异策略的自适应差 分进化算法及应用[ J] . 计算机工程与应用, 2020, 56(4) : 146-157.
SHEN X, ZOU D X, ZHANG Q. Adaptive differential evolution algorithm using double mutation strategies and its application[ J] . Computer engineering and applications, 2020, 56(4) : 146-157.
[15] 赵云涛, 梅伟, 李维刚, 等. 基于改进 CMA-ES 算 法的机器人轨迹规划[ J] . 计算机仿真, 2019, 36 (12) : 317-322.
ZHAO Y T, MEI W, LI W G, et al. Robot trajectory planning based on improved CMA-ES algorithm [ J ] . Computer simulation, 2019, 36(12) : 317-322.
[16] 李牧东, 赵辉, 翁兴伟, 等. 基于最优高斯随机游 走和个体筛选策略的差分进化算法[ J] . 控制与决 策, 2016, 31(8) : 1379-1386.
LI M D, ZHAO H, WENG X W, et al. Differential evolution based on optimal Gaussian random walk and individual selection strategies [ J ] . Control and decision, 2016, 31(8) : 1379-1386.