[1]王培崇,尹欣洁,李丽荣.一种具有学习机制的海鸥优化算法[J].郑州大学学报(工学版),2022,43(06):8-14.[doi:10.13705/j.issn.1671-6833.2022.06.010]
 WANG Peichong,YIN Xinjie,LI Lirong.An Improved Seagull Optimization Algorithm with Learning[J].Journal of Zhengzhou University (Engineering Science),2022,43(06):8-14.[doi:10.13705/j.issn.1671-6833.2022.06.010]
点击复制

一种具有学习机制的海鸥优化算法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
43
期数:
2022年06期
页码:
8-14
栏目:
出版日期:
2022-09-02

文章信息/Info

Title:
An Improved Seagull Optimization Algorithm with Learning
作者:
王培崇12 尹欣洁12 李丽荣3
1.河北地质大学信息工程学院;2.河北地质大学人工智能与机器学习研究室;3.河北地质大学艺术学院;

Author(s):
WANG Peichong12 YIN Xinjie12 LI Lirong3
1.School of Information Engineering, Hebei GEO University, Shijiazhuang 050031, China; 
2.Laboratory of AI and Machine Learning, Hebei GEO University, Shijiazhuang 050031, China; 
3.School of Art, Hebei GEO University, Shijiazhuang 050031, China
关键词:
Keywords:
seagull optimization algorithm learning mechanism nonlinear parameter opposition-based learning
分类号:
TP301. 6;O234
DOI:
10.13705/j.issn.1671-6833.2022.06.010
文献标志码:
A
摘要:
为了克服海鸥优化算法在求解高维问题时存在的收敛速度慢、容易早熟和解精度低等问题,提出一种具有学习机制的海鸥优化算法( ISOAL) 。 首先,设计了一种基于当前粒子 Xi 与种群均值状态 Xm差异的迁移算子,提升早期个体对解空间的搜索范围。 其次,引入非线性自适应参数 A 保证算法适合于复杂问题解空间的搜索,避免算法过早地陷入局部最优。 最后,通过引入部分精英粒子执行反向学习,加强对种群内的最优粒子所在空间的勘探,提高算法的解精度。 实验选择了 CEC2017 中的 10 个无约束测试函数检测算法的性能,并与 HPSO-TS、V-DVGA、DADE、CMA-ES 等算法进行对比,该组实验结果显示,ISOAL 比其他算法具有更高的解精度和稳定性。 针对张力弹簧问题进行实验,结果表明:ISOAL 所获得的弹簧总代价比 SOA 降低了 3. 5%,弹簧的线圈直径和平均直径分别下降了 5. 7%和 3. 5%。 ISOAL算法具有收敛速度快、精度高和鲁棒性的特点,适合求解较高维度的连续函数优化问题和带有约束的工程优化问题。
Abstract:
To overcome the weakness of slow convergence, prematureness and low accuracy of seagull optimization algorithm (SOA) in solving high-dimensional problems,an improved SOA with learning (ISAOL)was proposed. A migration operator based on the difference between the Xi and the Xmwas designed, this could make Xi search wider solution spaces in early stage, and a nonlinear adaptive parameter A was introduced to ensure the algorithm suitable for the search of solution space of complex problems, which could prevent the algorithm from falling into local optimum too early. In the later stage, some elite individuals executed opposition based learning(OBL) to intensify the exploration of the space around the global optimal individual to improve the accuracy of solution. Ten unconstrained test functions in CEC2017 were selected to test the performance of the ISOA and compared with HPSO-TS, V-DVGA, DADE, CMA-ES and others. Testing results of this experiments showed that the ISOAL had higher accuracy and stability than other algorithms. Finally, experiments was carried out by using the tension spring problem. The results showed that the total cost of the spring , the coil diameter and the average diameter of the spring obtained by the ISOAL were reduced by 3.5% ,5.7% and 3.5% than SOA, respectively. ISOAL had the attributes of fast convergence, high accuracy and robustness, fitting to solve higher dimensional function optimization problem and engineering optimization problems with constraints.

参考文献/References:

[1] 徐霜, 万强, 余琍. 基于学习理论的改进粒子群优 化算法 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2019, 40 (2) : 29-34. 

XU S, WAN Q, YU L. An improved particle swarm optimization algorithm based on learning theory [ J ] . Journal of Zhengzhou university ( engineering science) , 2019, 40(2) : 29-34.
 [2] DHIMAN G, KUMAR V. Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems [ J] . Knowledge-based systems, 2019, 165: 169-196. 
[3] CHEN X, LI Y L, ZHANG Y C, et al. A novel hybrid model based on an improved seagull optimization algorithm for short-term wind speed forecasting [ J ] . Processes, 2021, 9(2) : 387. 
[4] 岳文静,孙鹏,陈志. 基于改进海鸥算法的认知无人 机网络频谱分配[ J] . 计算机技术与发展,2021,31 (9) :7-12. 
YUE W J, SUN P, CHEN Z. Spectrum allocation of cognitive UAV network based on improved seagull algorithm[ J] . Computer technology and development, 2021,31(9) :7-12. 
[5] 许乐, 莫愿斌, 卢彦越. 基于改进海鸥优化算法的 PID 控制器参数优化 [ J] . 机床与液压, 2021, 49 (16) : 17-23. 
XU L, MO Y B, LU Y Y. Parameter optimization of PID controller based on improved seagull optimization algorithm [ J] . Machine tool & hydraulics, 2021, 49 (16) : 17-23. 
[6] 毛清华,王迎港. 融合改进 Logistics 混沌和正弦余 弦算子的自适应 T 分布海鸥算法[EB / OL] . (2021- 10-22) [2021- 11- 13] . http:∥kns. cnki. net. zzulib. vpn358. com / kns8 / defaultresult / index. 
MAO Q H, WANG Y G. Adaptive T distribution seagull optimization algorithm combining improved logistics chaos and sine-cosine operator [ EB / OL ] . (2021-10-22) [2021-11-13] . http:∥kns. cnki. net. zzulib. vpn358. com / kns8 / defaultresult / index.
 [7] 王宁, 何庆. 融合黄金正弦与 sigmoid 连续化的海 鸥优化算法[ J] . 计算机应用研究, 2022, 39( 1) : 157-162, 169. 
WANG N, HE Q. Seagull optimization algorithm combining golden sine and sigmoid continuity[ J] . Application research of computers, 2022, 39 ( 1 ) : 157 - 162, 169.
 [8] 秦维娜, 张达敏, 尹德鑫, 等. 一种基于非线性惯 性权重的 海 鸥 优 化 算 法 [ J] . 小 型 微 型 计 算 机 系 统, 2022, 43(1) : 10-14. 
QIN W N, ZHANG D M, YIN D X, et al. Seagull optimization algorithm based on nonlinear inertia weight [ J] . Journal of Chinese computer systems, 2022, 43 (1) : 10-14.
 [9] CHE Y H, HE D X. A hybrid whale optimization with seagull algorithm for global optimization problems [ J ] . Mathematical problems in engineering, 2021, 2021: 6639671.
 [10] TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence [ C ] ∥ International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce. Piscataway:IEEE, 2005: 695-701. 
[11] 刘琨, 赵露露, 王辉. 一种基于精英反向和纵横交 叉的鲸 鱼 优 化 算 法 [ J] . 小 型 微 型 计 算 机 系 统, 2020, 41(10) : 2092-2097. 
LIU K, ZHAO L L, WANG H. Whale optimization algorithm based on elite opposition-based and crisscross optimization [ J ] . Journal of Chinese computer systems, 2020, 41(10) : 2092-2097.
 [12] 周文峰, 梁晓磊, 唐可心, 等. 具有拓扑时变和搜 索扰动的混合粒子群优化算法[ J] . 计算机应用, 2020, 40(7) : 1913-1918. 
ZHOU W F, LIANG X L, TANG K X, et al. Hybrid particle swarm optimization algorithm with topological time-varying and search disturbance [ J ] . Journal of computer applications, 2020, 40(7) : 1913-1918. 
[13] 孙敏, 叶侨楠, 陈中雄. 云环境下方差定向变异遗 传算法 的 任 务 调 度 [ J ] . 计 算 机 应 用, 2019, 39 (11) : 3328-3332. 
SUN M, YE Q N, CHEN Z X. Task scheduling of variance-directional variation genetic algorithm in cloud environment [ J ] . Journal of computer applications, 2019, 39(11) : 3328-3332. 
[14] 沈鑫, 邹德旋, 张强. 采用双变异策略的自适应差 分进化算法及应用[ J] . 计算机工程与应用, 2020, 56(4) : 146-157. 
SHEN X, ZOU D X, ZHANG Q. Adaptive differential evolution algorithm using double mutation strategies and its application[ J] . Computer engineering and applications, 2020, 56(4) : 146-157. 
[15] 赵云涛, 梅伟, 李维刚, 等. 基于改进 CMA-ES 算 法的机器人轨迹规划[ J] . 计算机仿真, 2019, 36 (12) : 317-322. 
ZHAO Y T, MEI W, LI W G, et al. Robot trajectory planning based on improved CMA-ES algorithm [ J ] . Computer simulation, 2019, 36(12) : 317-322. 
[16] 李牧东, 赵辉, 翁兴伟, 等. 基于最优高斯随机游 走和个体筛选策略的差分进化算法[ J] . 控制与决 策, 2016, 31(8) : 1379-1386. 
LI M D, ZHAO H, WENG X W, et al. Differential evolution based on optimal Gaussian random walk and individual selection strategies [ J ] . Control and decision, 2016, 31(8) : 1379-1386.

更新日期/Last Update: 2022-10-03