XU C Y. Research and improvement of a dangerous goods detection model based on YOLOv3 [ D ] . Lanzhou: Lanzhou University, 2019.
[2] 杨希. 基于深度学习的地铁安检危险物品检测[ D] . 武汉: 武汉理工大学, 2020.
YANG X. Detection of dangerous goods in subway security check based on deep learning[D] . Wuhan: Wuhan University of Technology, 2020.
[3] 王胜. 毫米波图像中危险物品检测[ D] . 北京: 清华 大学, 2018.
WANG S. Dangerous objects detection in millimeter wave images[D]. Beijing: Tsinghua University, 2018.
[4] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[5] HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN [C]∥2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988.
[6] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[ J] . IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9) : 1904-1916.
[7] FERNANDEZ-CARROBLES M, DENIZ O, MAROTO F. Gun and knife detection based on faster R-CNN for video surveillance[C]∥Iberian Conference on Pattern Recognition and Image Analysis. Cham: Springer International Publishing,2019: 441-452.
[8] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection [EB / OL] . (2020-08-23) [2021-09-13] . https:∥ doi. org / 10. 48550 / arXiv. 2004. 10934.
[9] Ultralytics. YOLOv5[ EB / OL] . ( 2020- 05- 18) [ 2021- 08-12] . https:∥ github. com / ultralytics/ yolov5.
[10] LIU W, ANGUELOV D, ERHAN D, et al. Ssd: single shot multibox detector [ C ] ∥ European Conference on Computer Vision. Berlin:Springer Press, 2016: 21-37.
[11] 张伟彬, 吴军, 易见兵. 基于 RFB 网络的特征融合管 制物品检测算法研究[ J] . 广西师范大学学报( 自然 科学版) , 2021, 39(4) : 34-46. ZHANG W B, WU J, YI J B. Research on feature fusion controlled items detection algorithm based on RFB network[ J] . Journal of Guangxi Normal University ( Natural Science Edition) , 2021, 39(4) : 34-46.
[12] YUN S, HAN D, CHUN S, et al. CutMix: regularization strategy to train strong classifiers with localizable features [C]∥2019 IEEE / CVF International Conference on Computer Vision ( ICCV) . Piscataway: IEEE, 2019: 6022 -6031.
[13] 张震, 李浩方, 李孟洲, 等. 改进 YOLOv3 算法与人 体信息数据融合的视频监控检测方法[ J] . 郑州大学 学报(工学版) , 2021, 42(1) : 28-34.
ZHANG Z, LI H F, LI M Z, et al. Video surveillance detection method based on improved YOLOv3 algorithm and human body information data fusion [ J] . Journal of Zhengzhou University ( Engineering Science) , 2021, 42 (1) : 28-34.
[14] WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[ C]∥2020 IEEE / CVF Conference on Computer Vision and Pattern Recognition Workshops ( CVPRW ) . Piscataway: IEEE, 2020: 1571-1580.
[15] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks [ J] . Science, 2014, 344 ( 6191) : 1492-1496.
[16] 薛小娜, 高淑萍, 彭弘铭, 等. 结合 k 近邻的改进密 度峰值聚类算法[ J] . 计算机工程与应用, 2018, 54 (7) : 36-43.
XUE X N, GAO S P, PENG H M, et al. Improved density peaks clustering algorithm combining k-nearest neighbors[ J] . Computer Engineering and Applications, 2018, 54(7) : 36-43.
[17] WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]∥Proceedings of the European Conference on Computer Vision (ECCV) . Berlin:Springer Press,2018: 3-19.