[1] 叶佳龙,刚铁.304不锈钢扩散焊界面的超声非线性成像[J].焊接学报,2014,35(5):95-99,118.YE J L, GANG T. Ultrasonic nonlinear imaging in diffusion bonding of 304 stainless steel[J].Transactions of the China Welding Institution,2014,35(5):95-99,118.[2] 栾亦琳.TiAl/40Cr扩散焊界面超声信号特征分析与缺陷智能识别研究[D].哈尔滨: 哈尔滨工业大学, 2008.LUAN Y L.Characteristics analysis of ultrasonic interface signals and defects intelligence recognitions of TiAl/40Cr diffusion bonding[D]. Harbin: Harbin Institute of Technology,2008.
[3] 吕彭民,吴玉文,宋年波.钢桥面铺装层粘接强度超声波无损检测技术研究[J].郑州大学学报(工学版),2017,38(5):55-60.LYU P M, WU Y W, SONG N B. Research on the ultrasonic non-destructive test technology of bonding strength for the steel bridge deck pavement layer[J]. Journal of Zhengzhou University (Engineering Science),2017,38(5):55-60.
[4] KUMAR S S,RAVISANKAR B.Destructive and non-destructive evaluation of copper diffusion bonds[J]. Journal of Manufacturing Processes,2016,23:13-20.
[5] 张驰,栾亦琳,罗志伟,等.扩散焊接头缺陷超声C扫描检测能力分析[J]. 焊接学报, 2016, 37(9): 83-86, 90, 132.ZHANG C,LUAN Y L,LUO Z W,et al.Analysis of ultrasonic C-scan detectability on diffusion bonding joint[J]. Transactions of the China Welding Institution, 2016, 37(9): 83-86, 90, 132.
[6] 张驰.钛合金扩散焊接头贴合型缺陷的非线性超声检测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.ZHANG C. Research of nonlinear ultrasonic testing method for kissing bond in titanium alloy diffusion bonding[D]. Harbin: Harbin Institute of Technology, 2016.
[7] 仇荣超,吕俊伟,宫剑,等.多波段前视红外图像融合的海面杂乱背景平滑方法[J]. 光谱学与光谱分析, 2020, 40(4): 1120-1126.QIU R C, LYU J W, GONG J, et al. Smoothing method for sea surface rough background based on multi-spectral forward-looking infrared images fusion[J]. Spectroscopy and Spectral Analysis, 2020, 40(4): 1120-1126.
[8] 丁贵鹏, 陶钢, 李英超, 等. 基于非下采样轮廓波变换与引导滤波器的红外及可见光图像融合[J]. 兵工学报, 2021, 42(9): 1911-1922.DING G P, TAO G, LI Y C, et al. Infrared and visible images fusion based on non-subsampled contourlet transform and guided filter[J]. Acta Armamentarii, 2021, 42(9): 1911-1922.
[9] 谭仁龙. 一种基于小波变换的图像融合方法[J]. 测绘通报, 2017(9): 42-45.TAN R L. An image fusion algorithm using wavelet transform[J]. Bulletin of Surveying and Mapping, 2017(9): 42-45.
[10] 齐海生, 荣传振, 肖力铭, 等. 基于双树复小波变换与引导滤波的红外与可见光图像融合算法[J]. 通信技术, 2019, 52(2): 330-336.QI H S, RONG C Z, XIAO L M, et al. Infrared-and-visible-image fusion algorithm based on dual-tree complex wavelet transform and guided filtering[J]. Communications Technology, 2019, 52(2): 330-336.
[11] 冯相辉. 一种改进的同态滤波图像增强算法[J]. 重庆邮电大学学报(自然科学版), 2020, 32(1): 138-145.FENG X H. An improved homomorphic filtering image enhancement algorithm[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2020, 32(1): 138-145.
[12] 程新. 基于同态滤波的图像增强算法研究[D]. 西安: 西安邮电大学, 2016.CHENG X. Image enhancement algorithm based on homomorphic filtering[D]. Xi′an: Xi′an University of Posts and Telecommunications, 2016.
[13] YU H F, LI X B, LOU Q, et al. Underwater image enhancement based on color-line model and homomorphic filtering[J]. Signal, Image and Video Processing, 2022, 16(1): 83-91.
[14] 黎秀玉, 宋树祥, 夏海英. 基于CLAHE和图像分解的去雾方法[J]. 广西大学学报(自然科学版), 2016, 41(5): 1552-1559.LI X Y, SONG S X, XIA H Y. Single image dehazing method based on CLAHE and image decomposition[J]. Journal of Guangxi University (Natural Science Edition), 2016, 41(5): 1552-1559.
[15] 冯媛硕, 宋吉江. 基于小波变换的信号特征与突变点检测算法研究[J]. 曲阜师范大学学报(自然科学版), 2015, 41(1): 76-80.FENG Y S, SONG J J. Research on the wavelet-based algorithms for signal feature and singularity detection[J]. Journal of Qufu Normal University (Natural Science), 2015, 41(1): 76-80.