[1]常 青,杨程伟,罗彬杰,等.基于小波变换的扩散焊超声 C 图像融合算法[J].郑州大学学报(工学版),2023,44(04):54-59,87.[doi:10.13705/j.issn.1671-6833.2023.01.003]
 CHANG Qing,YANG Chengwei,LUO Binjie,et al.Ultrasonic C Image Fusion Algorithm for Diffusion Welding Based on Wavelet Transform[J].Journal of Zhengzhou University (Engineering Science),2023,44(04):54-59,87.[doi:10.13705/j.issn.1671-6833.2023.01.003]
点击复制

基于小波变换的扩散焊超声 C 图像融合算法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44
期数:
2023年04期
页码:
54-59,87
栏目:
出版日期:
2023-06-01

文章信息/Info

Title:
Ultrasonic C Image Fusion Algorithm for Diffusion Welding Based on Wavelet Transform
作者:
常 青1 杨程伟1 罗彬杰1 李细峰2
1.华东理工大学 信息科学与工程学院,上海 200237, 2.上海交通大学 塑性成形技术与装备研究院,上海 200030

Author(s):
CHANG Qing1 YANG Chengwei1 LUO Binjie1 LI Xifeng2
1.School of Information Science and Engineering, 2.East China University

关键词:
扩散焊 超声 C 扫描 小波变换 引导滤波 图像融合
Keywords:
diffusion welding ultrasound C scan wavelet transform guided filtering image fusion
分类号:
TP391
DOI:
10.13705/j.issn.1671-6833.2023.01.003
文献标志码:
A
摘要:
为了提高钛合金扩散焊界面微小缺陷的检测能力,提出基于小波变换的超声 C 图像融合算法, 综合多幅图像中的缺陷信息,重构出包含微小缺陷在内的超声 C 图像。 首先;利用小波变换将待融合的 超声 C 图像分解为低频和高频部分,并根据高、低频系数的不同特征,对高、低频系数进行差异化融合处 理,对融合后的系数使用小波逆变换得到融合图像;最后,为了提高图像对比度、丰富图像细节信息,使 用改进的同态滤波器对融合图像进行增强,从而获得结果图像。 制备不同类型的人工缺陷试样进行测 试,并将所提算法和常规超声 C 扫描检测的缺陷长度进行定量比较。 实验结果表明:对于线形微小缺陷 和弱结合缺陷,使用所提算法重构的超声 C 图像的平均误差分别为 2 mm 和 4. 2 mm,常规超声 C 扫描的 平均误差分别为 8 mm 和 9. 5 mm。 所提算法重构的超声 C 图像能够更为准确地反映出缺陷信息。
Abstract:
In order to improve the detection ability of tiny defects at the interface of diffusion welding of titanium alloys, an ultrasonic C image fusion algorithm based on wavelet transform was proposed. Firstly, the ultrasonic C image to be fused is decomposed into low-frequency and high-frequency parts by wavelet transform, and the high and low frequency coefficients are differentiated and fused according to the different characteristics of the high and low frequency coefficients, and the inverse wavelet transform is used for the fused coefficients to get the fused image. Finally, in order to improve the contrast of the image and enrich the details of the image, the improved homomorphic filter is used to enhance the fusion image, so as to obtain the fusion result image. By preparing different types of artificial defect samples for testing, and quantitatively comparing the length of defects detected by the algorithm in this paper and conventional ultrasonic C scan, the experimental results show that for small linear defects and weak bond defects, the ultrasonic C reconstructed by the algorithm in this paper can be used. The average errors of the images were 2 mm and 4. 2 mm, respectively, and the average errors of conventional ultrasound C scan was 8 mm and 9. 5 mm, respectively. Therefore, the ultrasonic C image reconstructed by the proposed algorithm in this paper can reflect the defect information more accurately.

参考文献/References:

[1] 叶佳龙,刚铁.304不锈钢扩散焊界面的超声非线性成像[J].焊接学报,2014,35(5):95-99,118.YE J L, GANG T. Ultrasonic nonlinear imaging in diffusion bonding of 304 stainless steel[J].Transactions of the China Welding Institution,2014,35(5):95-99,118.

[2] 栾亦琳.TiAl/40Cr扩散焊界面超声信号特征分析与缺陷智能识别研究[D].哈尔滨: 哈尔滨工业大学, 2008.LUAN Y L.Characteristics analysis of ultrasonic interface signals and defects intelligence recognitions of TiAl/40Cr diffusion bonding[D]. Harbin: Harbin Institute of Technology,2008.
[3] 吕彭民,吴玉文,宋年波.钢桥面铺装层粘接强度超声波无损检测技术研究[J].郑州大学学报(工学版),2017,38(5):55-60.LYU P M, WU Y W, SONG N B. Research on the ultrasonic non-destructive test technology of bonding strength for the steel bridge deck pavement layer[J]. Journal of Zhengzhou University (Engineering Science),2017,38(5):55-60.
[4] KUMAR S S,RAVISANKAR B.Destructive and non-destructive evaluation of copper diffusion bonds[J]. Journal of Manufacturing Processes,2016,23:13-20.
[5] 张驰,栾亦琳,罗志伟,等.扩散焊接头缺陷超声C扫描检测能力分析[J]. 焊接学报, 2016, 37(9): 83-86, 90, 132.ZHANG C,LUAN Y L,LUO Z W,et al.Analysis of ultrasonic C-scan detectability on diffusion bonding joint[J]. Transactions of the China Welding Institution, 2016, 37(9): 83-86, 90, 132.
[6] 张驰.钛合金扩散焊接头贴合型缺陷的非线性超声检测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.ZHANG C. Research of nonlinear ultrasonic testing method for kissing bond in titanium alloy diffusion bonding[D]. Harbin: Harbin Institute of Technology, 2016.
[7] 仇荣超,吕俊伟,宫剑,等.多波段前视红外图像融合的海面杂乱背景平滑方法[J]. 光谱学与光谱分析, 2020, 40(4): 1120-1126.QIU R C, LYU J W, GONG J, et al. Smoothing method for sea surface rough background based on multi-spectral forward-looking infrared images fusion[J]. Spectroscopy and Spectral Analysis, 2020, 40(4): 1120-1126.
[8] 丁贵鹏, 陶钢, 李英超, 等. 基于非下采样轮廓波变换与引导滤波器的红外及可见光图像融合[J]. 兵工学报, 2021, 42(9): 1911-1922.DING G P, TAO G, LI Y C, et al. Infrared and visible images fusion based on non-subsampled contourlet transform and guided filter[J]. Acta Armamentarii, 2021, 42(9): 1911-1922.
[9] 谭仁龙. 一种基于小波变换的图像融合方法[J]. 测绘通报, 2017(9): 42-45.TAN R L. An image fusion algorithm using wavelet transform[J]. Bulletin of Surveying and Mapping, 2017(9): 42-45.
[10] 齐海生, 荣传振, 肖力铭, 等. 基于双树复小波变换与引导滤波的红外与可见光图像融合算法[J]. 通信技术, 2019, 52(2): 330-336.QI H S, RONG C Z, XIAO L M, et al. Infrared-and-visible-image fusion algorithm based on dual-tree complex wavelet transform and guided filtering[J]. Communications Technology, 2019, 52(2): 330-336.
[11] 冯相辉. 一种改进的同态滤波图像增强算法[J]. 重庆邮电大学学报(自然科学版), 2020, 32(1): 138-145.FENG X H. An improved homomorphic filtering image enhancement algorithm[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2020, 32(1): 138-145.
[12] 程新. 基于同态滤波的图像增强算法研究[D]. 西安: 西安邮电大学, 2016.CHENG X. Image enhancement algorithm based on homomorphic filtering[D]. Xi′an: Xi′an University of Posts and Telecommunications, 2016.
[13] YU H F, LI X B, LOU Q, et al. Underwater image enhancement based on color-line model and homomorphic filtering[J]. Signal, Image and Video Processing, 2022, 16(1): 83-91.
[14] 黎秀玉, 宋树祥, 夏海英. 基于CLAHE和图像分解的去雾方法[J]. 广西大学学报(自然科学版), 2016, 41(5): 1552-1559.LI X Y, SONG S X, XIA H Y. Single image dehazing method based on CLAHE and image decomposition[J]. Journal of Guangxi University (Natural Science Edition), 2016, 41(5): 1552-1559.
[15] 冯媛硕, 宋吉江. 基于小波变换的信号特征与突变点检测算法研究[J]. 曲阜师范大学学报(自然科学版), 2015, 41(1): 76-80.FENG Y S, SONG J J. Research on the wavelet-based algorithms for signal feature and singularity detection[J]. Journal of Qufu Normal University (Natural Science), 2015, 41(1): 76-80.

更新日期/Last Update: 2023-07-01