[1] 付卫红, 周新彪, 农斌. 单通道盲源分离的研究现状与展望[J]. 北京邮电大学学报, 2017, 40(5): 1-11.FU W H, ZHOU X B, NONG B. The research of SCBSS technology: survey and prospect[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40(5): 1-11.[2] AKHAVAN S, SOLTANIAN-ZADEH H. Blind separation of sparse sources from nonlinear mixtures[J]. Digital Signal Processing, 2021, 118: 103220.
[3] OURDOU A, GHAZDALI A, LAGHRIB A, et al. Blind separation of instantaneous mixtures of independent/dependent sources[J]. Circuits, Systems, and Signal Processing, 2021, 40(9): 4428-4451.
[4] HYV RINEN A, OJA E. A fast fixed-point algorithm for independent component analysis[J]. Neural Computation, 1997, 9(7): 1483-1492.
[5] HYV RINEN A, OJA E. Independent component analysis: algorithms and applications[J]. Neural Networks, 2000, 13(4/5): 411-430.
[6] 陈韬伟, 金炜东. 基于主成分分析的雷达辐射源信号数量估计[J]. 西南交通大学学报, 2009, 44(4): 501-506.CHEN T W, JIN W D. Radar emitter number estimation based on principal component analysis[J]. Journal of Southwest Jiaotong University, 2009, 44(4): 501-506.
[7] GAO L Y, LIU M Z, YUE J Y, et al. Source number estimation based on improved singular value decomposition at low SNR[C]∥2019 IEEE 9th International Conference on Electronics Information and Emergency Communication. Piscataway: IEEE, 2019:1-4.
[8] AKAIKE H. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716-723.
[9] RISSANEN J. Modeling by shortest data description[J]. Automatica, 1978, 14(5): 465-471.
[10] JIANG B, LU A N, XU J. An improved signal number estimation method based on information theoretic criteria in array processing[C]∥2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN). Piscataway: IEEE, 2019: 193-197.
[11] ZHANG G D, ZHOU H M, WANG C J, et al. Forecasting time series albedo using NARnet based on EEMD decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3544-3557.
[12] SHANNON C E. A mathematical theory of communication[J]. Bell System Technical Journal, 1948, 27(3): 379-423.
[13] GOUR G, TOMAMICHEL M. Entropy and relative entropy from information-theoretic principles[J]. IEEE Transactions on Information Theory, 2021, 67(10): 6313-6327.
[14] SABETSARVESTANI Z, RENNA F, KIRALY F, et al. Source separation with side information based on Gaussian mixture models with application in art investigation[J]. IEEE Transactions on Signal Processing, 2020, 68: 558-572.
[15] YU L, YANG T Y, CHAN A B. Density-preserving hierarchical EM algorithm: simplifying Gaussian mixture models for approximate inference[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(6): 1323-1337.
[16] OSMUNDSEN K K, KLEPPE T S, OGLEND A. MCMC for Markov-switching models—Gibbs sampling vs. marginalized likelihood[J]. Communications in Statistics: Simulation and Computation, 2021, 50(3): 669-690.
[17] HASTINGS W K. Monte Carlo sampling methods using Markov chains and their applications[J]. Biometrika, 1970, 57(1): 97-109.
[18] 张双圣, 强静, 刘汉湖, 等. 基于拉丁超立方抽样的改进型多链DRAM算法求解地下水污染反问题[J]. 郑州大学学报(工学版), 2020, 41(3): 72-78.ZHANG S S, QIANG J, LIU H H, et al. Improved multi-chain DRAM algorithm based on Latin hypercube sampling for inverse problems of underground water pollution[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(3): 72-78.
[19] 纪林章, 庄海滔, 程道来, 等. 基于EEMD和FastICA的单通道背景声舱音盲源分离[J]. 应用技术学报, 2021, 21(1): 62-67, 74.JI L Z, ZHUANG H T, CHENG D L, et al. Blind source separation of single-channel background sound cockpit voice based on EEMD and FastICA[J]. Journal of Technology, 2021, 21(1): 62-67, 74.
[20] 谭志良, 毕军建, 徐立新, 等. 一种多干扰条件下非连续通信信号自适应消噪方法: CN104394109B[P]. 2015-08-26.TAN Z L, BI J J, XU L X, et al. Adaptive denoising method of non-continuous communication signal under multi-interference condition: CN104394109B[P]. 2015-08-26.