[1]毛 玲,赵联文,孟 华,等.基于信源信息熵最小的单通道盲源数估计算法[J].郑州大学学报(工学版),2023,44(04):60-66.[doi:10.13705/j. issn.1671-6833.2023.04.004]
 MAO Ling,ZHAO Lianwen,MENG Hua,et al.Single Channel Blind Source Number Estimation Algorithm Based on Source Information Entropy Minimization[J].Journal of Zhengzhou University (Engineering Science),2023,44(04):60-66.[doi:10.13705/j. issn.1671-6833.2023.04.004]
点击复制

基于信源信息熵最小的单通道盲源数估计算法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44
期数:
2023年04期
页码:
60-66
栏目:
出版日期:
2023-06-01

文章信息/Info

Title:
Single Channel Blind Source Number Estimation Algorithm Based on Source Information Entropy Minimization
作者:
毛 玲 赵联文 孟 华 李雨锴
西南交通大学 数学学院,四川 成都 610031

Author(s):
MAO Ling ZHAO Lianwen MENG Hua LI Yukai
School of Mathematics, Southwest Jiaotong University, Sichuan Chengdu 610031

关键词:
单通道盲源分离 源数估计 信息熵 高斯混合模型 马尔可夫链蒙特卡罗算法
Keywords:
single channel blind source separation source number estimation information entropy Gaussian mixture model Markov chain Monte Carlo algorithm
分类号:
TN911.72;O213
DOI:
10.13705/j. issn.1671-6833.2023.04.004
文献标志码:
A
摘要:
源数估计问题是盲源分离(BSS)中的一个关键问题,因为源数会直接影响盲源分离的效果。 针对此问题 提出了一种将信息熵作为统计评价指标的单通道盲源数估计算法,使用信息熵来度量源信号的信息量大小从而确 定源数。 为了计算估计源信号的信息熵,首先,使用高斯混合模型( GMM) 来拟合其分布;其次,基于马尔可夫链蒙 特卡罗(MCMC)算法,采样得到服从目标分布的样本,并进行熵的计算;最后,通过最小化估计源信号平均信息熵 得到盲源个数。 一系列基于仿真数据和真实通信数据的实验表明,所提算法具有较强的鲁棒性,且能以 94% 的准 确率估计出源数,从而验证了算法的有效性。
Abstract:
The problem of source number estimation was a key issue in blind source separation (BSS) , because the number of sources directly affected the effect of BSS. To solve this problem, this paper proposed a single-channel blind source number estimation algorithm that took the information entropy as the statistical evaluation index, and used the information entropy to measure the information quantity of the source signal to determine the source number. To calculate the information entropy of the estimated source signals, firstly, the Gaussian mixture model (GMM) was used to fit their distributions; Secondly, samples obeying the target distribution were sampled and the entropy is calculated based on the Markov chain Monte Carlo (MCMC) algorithm; Finally, the source number was obtained by minimizing the average information entropy of the source signal. A series of experiments based on simulation data and real communication data show that the proposed algorithm has strong robustness and can estimate the number of sources with 94% accuracy, thus verifying the effectiveness of the algorithm.

参考文献/References:

[1] 付卫红, 周新彪, 农斌. 单通道盲源分离的研究现状与展望[J]. 北京邮电大学学报, 2017, 40(5): 1-11.FU W H, ZHOU X B, NONG B. The research of SCBSS technology: survey and prospect[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40(5): 1-11.

[2] AKHAVAN S, SOLTANIAN-ZADEH H. Blind separation of sparse sources from nonlinear mixtures[J]. Digital Signal Processing, 2021, 118: 103220.
[3] OURDOU A, GHAZDALI A, LAGHRIB A, et al. Blind separation of instantaneous mixtures of independent/dependent sources[J]. Circuits, Systems, and Signal Processing, 2021, 40(9): 4428-4451.
[4] HYV RINEN A, OJA E. A fast fixed-point algorithm for independent component analysis[J]. Neural Computation, 1997, 9(7): 1483-1492.
[5] HYV RINEN A, OJA E. Independent component analysis: algorithms and applications[J]. Neural Networks, 2000, 13(4/5): 411-430.
[6] 陈韬伟, 金炜东. 基于主成分分析的雷达辐射源信号数量估计[J]. 西南交通大学学报, 2009, 44(4): 501-506.CHEN T W, JIN W D. Radar emitter number estimation based on principal component analysis[J]. Journal of Southwest Jiaotong University, 2009, 44(4): 501-506.
[7] GAO L Y, LIU M Z, YUE J Y, et al. Source number estimation based on improved singular value decomposition at low SNR[C]∥2019 IEEE 9th International Conference on Electronics Information and Emergency Communication. Piscataway: IEEE, 2019:1-4.
[8] AKAIKE H. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716-723.
[9] RISSANEN J. Modeling by shortest data description[J]. Automatica, 1978, 14(5): 465-471.
[10] JIANG B, LU A N, XU J. An improved signal number estimation method based on information theoretic criteria in array processing[C]∥2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN). Piscataway: IEEE, 2019: 193-197.
[11] ZHANG G D, ZHOU H M, WANG C J, et al. Forecasting time series albedo using NARnet based on EEMD decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3544-3557.
[12] SHANNON C E. A mathematical theory of communication[J]. Bell System Technical Journal, 1948, 27(3): 379-423.
[13] GOUR G, TOMAMICHEL M. Entropy and relative entropy from information-theoretic principles[J]. IEEE Transactions on Information Theory, 2021, 67(10): 6313-6327.
[14] SABETSARVESTANI Z, RENNA F, KIRALY F, et al. Source separation with side information based on Gaussian mixture models with application in art investigation[J]. IEEE Transactions on Signal Processing, 2020, 68: 558-572.
[15] YU L, YANG T Y, CHAN A B. Density-preserving hierarchical EM algorithm: simplifying Gaussian mixture models for approximate inference[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(6): 1323-1337.
[16] OSMUNDSEN K K, KLEPPE T S, OGLEND A. MCMC for Markov-switching models—Gibbs sampling vs. marginalized likelihood[J]. Communications in Statistics: Simulation and Computation, 2021, 50(3): 669-690.
[17] HASTINGS W K. Monte Carlo sampling methods using Markov chains and their applications[J]. Biometrika, 1970, 57(1): 97-109.
[18] 张双圣, 强静, 刘汉湖, 等. 基于拉丁超立方抽样的改进型多链DRAM算法求解地下水污染反问题[J]. 郑州大学学报(工学版), 2020, 41(3): 72-78.ZHANG S S, QIANG J, LIU H H, et al. Improved multi-chain DRAM algorithm based on Latin hypercube sampling for inverse problems of underground water pollution[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(3): 72-78.
[19] 纪林章, 庄海滔, 程道来, 等. 基于EEMD和FastICA的单通道背景声舱音盲源分离[J]. 应用技术学报, 2021, 21(1): 62-67, 74.JI L Z, ZHUANG H T, CHENG D L, et al. Blind source separation of single-channel background sound cockpit voice based on EEMD and FastICA[J]. Journal of Technology, 2021, 21(1): 62-67, 74.
[20] 谭志良, 毕军建, 徐立新, 等. 一种多干扰条件下非连续通信信号自适应消噪方法: CN104394109B[P]. 2015-08-26.TAN Z L, BI J J, XU L X, et al. Adaptive denoising method of non-continuous communication signal under multi-interference condition: CN104394109B[P]. 2015-08-26.

更新日期/Last Update: 2023-07-01